
                                       UNIT -1 

What is a Cost Function? 

It is a function that measures the performance of a model for any given data. Cost Function 

quantifies the error between predicted values and expected values and presents it in the form of a 

single real number. 

After making a hypothesis with initial parameters, we calculate the Cost function. And with a 

goal to reduce the cost function, we modify the parameters by using the Gradient descent 

algorithm over the given data. Here’s the mathematical representation for it: 

                                          

                                           

What is Gradient Descent? 

Gradient descent is an optimization algorithm used in machine learning to minimize the cost 

function by iteratively adjusting parameters in the direction of the negative gradient, aiming to 

find the optimal set of parameters. 

The cost function represents the discrepancy between the predicted output of the model and the 

actual output. The goal of gradient descent is to find the set of parameters that minimizes this 

discrepancy and improves the model’s performance. 

The algorithm operates by calculating the gradient of the cost function, which indicates the 

direction and magnitude of steepest ascent. However, since the objective is to minimize the cost 

function, gradient descent moves in the opposite direction of the gradient, known as the negative 

gradient direction. 

By iteratively updating the model’s parameters in the negative gradient direction, gradient 

descent gradually converges towards the optimal set of parameters that yields the lowest cost. 

https://www.analyticsvidhya.com/blog/2021/02/cost-function-is-no-rocket-science/


The learning rate, a hyperparameter, determines the step size taken in each iteration, influencing 

the speed and stability of convergence. 

Gradient descent can be applied to various machine learning algorithms, including linear 

regression, logistic regression, neural networks, and support vector machines. It provides a 

general framework for optimizing models by iteratively refining their parameters based on the 

cost function. 

Example of Gradient Descent 

Let’s say you are playing a game where the players are at the top of a mountain, and they are 

asked to reach the lowest point of the mountain. Additionally, they are blindfolded. So, what 

approach do you think would make you reach the lake? 

Take a moment to think about this before you read on. 

The best way is to observe the ground and find where the land descends. From that position, take 

a step in the descending direction and iterate this process until we reach the lowest point. 

 

Finding the lowest point in a hilly landscape. (Source: Fisseha Berhane)  

Gradient descent is an iterative optimization algorithm for finding the local minimum of a 

function. 

To find the local minimum of a function using gradient descent, we must take steps proportional 

to the negative of the gradient (move away from the gradient) of the function at the current point. 

If we take steps proportional to the positive of the gradient (moving towards the gradient), we 

will approach a local maximum of the function, and the procedure is called Gradient Ascent. 

Gradient descent was originally proposed by CAUCHY in 1847. It is also known as steepest 

descent. 



 

  

Source: Clairvoyant  

The goal of the gradient descent algorithm is to minimize the given function (say cost function). 

To achieve this goal, it performs two steps iteratively: 

1. Compute the gradient (slope), the first order derivative of the function at that point 

2. Make a step (move) in the direction opposite to the gradient, opposite direction of 

slope increase from the current point by alpha times the gradient at that point 

 



  

Alpha is called Learning rate – a tuning parameter in the optimization process. It decides the 

length of the steps. 

How Does Gradient Descent Work? 

1. Gradient descent is an optimization algorithm used to minimize the cost function of a 

model. 

2. The cost function measures how well the model fits the training data and is defined based 

on the difference between the predicted and actual values. 

3. The gradient of the cost function is the derivative with respect to the model’s parameters 

and points in the direction of the steepest ascent. 

4. The algorithm starts with an initial set of parameters and updates them in small steps to 

minimize the cost function. 

5. In each iteration of the algorithm, the gradient of the cost function with respect to each 

parameter is computed. 

6. The gradient tells us the direction of the steepest ascent, and by moving in the opposite 

direction, we can find the direction of the steepest descent. 

7. The size of the step is controlled by the learning rate, which determines how quickly the 

algorithm moves towards the minimum. 

8. The process is repeated until the cost function converges to a minimum, indicating that 

the model has reached the optimal set of parameters. 

9. There are different variations of gradient descent, including batch gradient descent, 

stochastic gradient descent, and mini-batch gradient descent, each with its own advantages and 

limitations. 

10. Efficient implementation of gradient descent is essential for achieving good performance 

in machine learning tasks. The choice of the learning rate and the number of iterations can 

significantly impact the performance of the algorithm. 

Types of Gradient Descent 

The choice of gradient descent algorithm depends on the problem at hand and the size of the 

dataset. Batch gradient descent is suitable for small datasets, while stochastic gradient descent is 

more suitable for large datasets. Mini-batch gradient descent is a good compromise between the 

two and is often used in practice. 

Batch Gradient Descent 

Batch gradient descent updates the model’s parameters using the gradient of the entire training 

set. It calculates the average gradient of the cost function for all the training examples and 

updates the parameters in the opposite direction. Batch gradient descent guarantees convergence 

to the global minimum, but can be computationally expensive and slow for large datasets. 

Stochastic Gradient Descent 



Stochastic gradient descent updates the model’s parameters using the gradient of one training 

example at a time. It randomly selects a training example, computes the gradient of the cost 

function for that example, and updates the parameters in the opposite direction. Stochastic 

gradient descent is computationally efficient and can converge faster than batch gradient descent. 

However, it can be noisy and may not converge to the global minimum. 

Mini-Batch Gradient Descent 

Mini-batch gradient descent updates the model’s parameters using the gradient of a small subset 

of the training set, known as a mini-batch. It calculates the average gradient of the cost function 

for the mini-batch and updates the parameters in the opposite direction. Mini-batch gradient 

descent combines the advantages of both batch and stochastic gradient descent, and is the most 

commonly used method in practice. It is computationally efficient and less noisy than stochastic 

gradient descent, while still being able to converge to a good solution. 

Plotting the Gradient Descent Algorithm 

When we have a single parameter (theta), we can plot the dependent variable cost on the y-axis 

and theta on the x-axis. If there are two parameters, we can go with a 3-D plot, with cost on one 

axis and the two parameters (thetas) along the other two axes. 

 

  

                                              cost along z-axis and parameters(thetas) along x-axis and y-axis (source: Research gate)  

It can also be visualized by using Contours. This shows a 3-D plot in two dimensions with 

parameters along both axes and the response as a contour. The value of the response increases 

away from the center and has the same value along with the rings. The response is directly 

proportional to the distance of a point from the center (along a direction). 



 

  

Gradient descent using Contour Plot. (source: Coursera ) 

 

Alpha – The Learning Rate 

We have the direction we want to move in, now we must decide the size of the step we must 

take. 

*It must be chosen carefully to end up with local minima. 

●
 If the learning rate is too high, we might OVERSHOOT the minima and keep bouncing, 

without reaching the minima 

●
 If the learning rate is too small, the training might turn out to be too long 

 

  

Source: Coursera   

1. a) Learning rate is optimal, model converges to the minimum 

2. b) Learning rate is too small, it takes more time but converges to the minimum 



3. c) Learning rate is higher than the optimal value, it overshoots but converges ( 1/C < η 

<2/C) 

4. d) Learning rate is very large, it overshoots and diverges, moves away from the minima, 

performance decreases on learning 

 

  

Source: researchgate   

Note: As the gradient decreases while moving towards the local minima, the size of the step 

decreases. So, the learning rate (alpha) can be constant over the optimization and need not be 

varied iteratively. 

Local Minima 

The cost function may consist of many minimum points. The gradient may settle on any one of 

the minima, which depends on the initial point (i.e initial parameters(theta)) and the learning 

rate. Therefore, the optimization may converge to different points with different starting points 

and learning rate. 



 

  

                                      Convergence of cost function with different starting points (Source: Gfycat )  

Code Implementation of Gradient Descent in Python 

 

  



                               Gradient Descent Algorithm  

Challenges of Gradient Descent 

While gradient descent is a powerful optimization algorithm, it can also present some challenges 

that can affect its performance. Some of these challenges include: 

1. Local Optima: Gradient descent can converge to local optima instead of the global 

optimum, especially if the cost function has multiple peaks and valleys. 

2. Learning Rate Selection: The choice of learning rate can significantly impact the 

performance of gradient descent. If the learning rate is too high, the algorithm may overshoot the 

minimum, and if it is too low, the algorithm may take too long to converge. 

3. Overfitting: Gradient descent can overfit the training data if the model is too complex or 

the learning rate is too high. This can lead to poor generalization performance on new data. 

4. Convergence Rate: The convergence rate of gradient descent can be slow for large 

datasets or high-dimensional spaces, which can make the algorithm computationally expensive. 

5. Saddle Points: In high-dimensional spaces, the gradient of the cost function can have 

saddle points, which can cause gradient descent to get stuck in a plateau instead of converging to 

a minimum. 

To overcome these challenges, several variations of gradient descent have been developed, such 

as adaptive learning rate methods, momentum-based methods, and second-order methods. 

Additionally, choosing the right regularization method, model architecture, and hyperparameters 

can also help improve the performance of gradient descent. 
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fll Training Algorithms for Pattern Association 

• PJtt.?rn i.,".,IJtl'-'0 is th~ rn,-..~ t'1P.~ .. -n1'.'n:in~ in{'tlh'Ufl'U( l'-llt\'tllS in :l h\-t\'l\)-,ISS\'\'l,ll1, ,, 

. • 1 · , .. ... ,1· 1t1·, .,n .•t\\l'tl in, ,1\krr\,, ~--111 
network archttn:-tUn:", l'r mrut f'ltt-.'nlS l'n ) Ill ;ill ~Hl1\'-,.l:o-!--\' ' '- '- ' \ \, 

the rJtk·ms wh('n a n~w in;iut f'ltk'rrl is rn'S-.'llk'\f. 

• PJttem asStx-i.1til,n k.lITls .:i..,,\',·i.1ti\,ns ~-t\, -.'\.'n input 1'-ltw11s :Uhl l'llrpur palh.'ms. Ir 1$ 

\\iJely used in disni1'ur.:-J mem\,~-m\xklin~. It is ,,11-.' l,f rh .. - llh'I\' t",:1si'-' '" ,,-1.iyi..'r ll1.'I\\ ,,rls. 

• Its archit.:'Cture consists of t\n.> s~ts 0f units. th-.' inrut units :uhl 1h1.' ,,1Hput units. F.idt input 

unit conn~·ts tl) e.:ich ('utrut unit , i.1 wi..·i~ht;.'\J '-'l'lllll'\.'tit)(lS. Th"' '-·,,nn1.'\.·ti\,ns :tn.' l'rtl~ 

allowed from inrut units to (1urru1 units. 

• The eft'el:t of a unit l1i in the inrut l.lya ,,n a unit u, in thl' l,utput Lt) a is d .. ·ll·nnincd t,~ th~, 

proJuct 0f the acti,·ariL'n 3i of l1i :mJ the ""'ifht l,f thl' l',)(lttlYtit'll fnmt u, hl u,. l'h1.• 

actiYation of a unit uJ in the ourrur byt·r is gi, en by : SC~ ll w,, x a,) 

• A pattern associJtion c:m l't' tr.1in .. ·J t'-) rcsix,nJ ,,ich a Ct'l1Jin l,uq,ut p:ltk'm "h .. ·n pn.·sclll-.\i 

\\ith an input patt.:rn. The Cl'nne1.·tit10 weights l'an l't' aJjusk'\J in l)rd1..·r fl) dt:mg .. • th,' 

input'output beha,ior. The le:u-ning rule is what s~-cifil'S nln,· a n('t\\\,rk dwtg('s it \\'t.'ights 

for a gi,·en input ·output JssociJril'O. 

• The most commonly used le:u-ning rules with r:ittc-rn ass,1'-·iat'-,rs arc ~kbb mk and thl' ddt,1 

rule. 

f II• Hebb Rule 

• Hebb rule is the simplest and most common mcthl)d of Jctcnnining wci~hts fl)f an 

associati,·e memory neural net. It can be used wi1h patterns arc rl'prcscnt~J as citht.'r binary 

or bipolar ,·ecrors 
· 

• Hebb's Law stares that if neuron i is near enou(lh to •""c,·1,, n•'ur·'n J. "n i ii 
::: "' ·" ... ... v .. L rc:p1.'atcl \ 

participates in its actirntion, the S)napric connection bctw•'•'n 111 ,.. , , t . · 
...... cs1: "o nl'urons 1s 

strengthened and neuronj becomes more sensitive to stimuli from neuron i. 

• According to Hebb rule, weight ,·ector is found to increase proportionat"I)' t 
1 

ti i • 

. 
l K' ('fOl U('( l)f 

the mput and learning signal. 

• Hebb's Law can be represent in the form two rules : 

1. If two neurons on either side· of a connection arc acti\'·:t, ... 1 
...... u S)llchronously. thi.:n th1..· 

weight of that connection is increased. 

2. If ~ 'O neurons on ei~her side of a connection arc acrh·atcd asynd1rnnously. th1.·n till· 

weight of that connect10n is decreased. 

• Fig. 2.1. I shows Hebbian learning in a ne.ural network. 
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nd

_D_ee~p=-L_e_a_rn_in~g~--.:~~-~A~ss~o~c,~·at~iv~e~M~e~m~o~ry~a~n~d~U!!._n~s~up~e~rv~is~e~d_!:L~ea~r!.!.:n,'!.'..·ng~N~et~w'..'.:'.o':..::.rk::::__s 

Input signals Output signals 

Fig. 2.1.1 Hebbian learning in a neural network 

• Using Hebb's Law, we can express the adjustment applied to the weight Wij at iteration P in 

the following form : 

/!J. Wu(p) = F[y/p), x/p)], 

• where F[y/p), xi(p)] is a function of both postsynaptic and presynaptic activities. 

• As a special case, we can represent Hebb's law 

/!J. Wij(p) = ayi(p) xi(p) 

where a is the learning rate parameter. 

• This equation is referred to as the activity product rule. It shows how a change in the weight 

of the synaptic connection between a pair of neurons is related to a product of the incoming 

and outgoing signals. 

• Hebbian learning implies that weights can only increase. In other words, Hebb's Law allows 

the strength of a connection to increase, but it does not provide a means to decrease the 

strength. Thus, repeated application of the input si'gnal may drive the weight wij into 

saturation. 

• The wu stands for the weight of the connection from neuron j to neuron i. Fig. 2. l .2 shows 

Two connected neurons (wij)-

x, 
W,(new) = W,(old)+9 

Fig. 2.1.2 Two connected neurons 

• To resolve this problem, we might impose a limit on the growth of synaptic weights. It can 

be done by introducing a non-linear forgetting factor into l lcbb 's Law. 
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Neural Networl<.s and Deep Learning 2-4 Associative Memory and Unsupervised Learning Networks 

• Hebbian learning requires no other infonnation than the activities, such as labels or crr()r 

signals: it is an unsupervised learning method. Hebbian learning is not a concrete learning 

rule, it is a postulate on the fundamental principle of biological learning. 

• Forgetting factor (0) specifies the weight decay in a single learning cycle. It usually fa lls in 

the interval between O and I. If the forgetting factor is 0, the neural network is capable only 

of strengthening its synaptic weights, and as a result, these weights grow towards infinity. 

On the other hand, if the forgetting factor is close to I , the network remembers very little of 

what it learns. Therefore, a rather small forgetting factor should be chosen, typically between 

0.01 and 0.1, to allow only a little ' forgetting' while limiting the weight growth. 

• Fig. 2.1.3 shows flow chart of Hebb training algorithm. 

Start 

Initialize weights 

Activate input 
x, = s, 

n 

Activate output 
y=t 

Weight update 
w

1
(new) = w1

(old) + xy 

Bias update 
b(new) = b(old) + y 

Stop 

Fig. 2.1.3 Flow chart of Hebb training algorithm 

• Generalized Hebbian learning algorithm : 

J. Initialization: Set initial synaptic weights and thresholds to small random values, say in 

an interval [O, I]. Also assign small positive values to the learning rate parameter a and 

forgetting factor 0. 

2. Activation : Compute the neuron output at iteration p 
n 

Y/P) = L x/p) w/ p)- 0i 
' fl I 

where n is the number of neuron inputs, and OJ is the threshold value of neuron j. 

® - an edge 
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,\ ',-.ll:~~~~~~~s mid D«'«'P L t'illl!'L'!J 2 - - • 5 ___ Ass1>c'i<1t1vo Alomory nnd Uns11po1visod L<>nrnm!} No/works 

-'· l.t':1rnin~: l 'pdatl' thl'" •i.,l 1 · . -
l 1 s 111 the net\\ tir~ 

" } I' I I) \\' (p) 1 .\w (J)) 
II II 

"h1..'t\' 1\\ J p) is lhL' \h'i"I I • . . .. . . . 
• .1 

1 lOttn l11H1 al 11l·ral1on p . 

.&. lh'r:ahon : lnl'l'L':\SL' ill'nt i l 
. ' 1' 11 P 'Y OllL'. go har~ to Sll·p and continue 1111til 1hc synaptic 

"l't!.!.hts rl'ad1 tlwir ,.,, .. 1 ly .1 1 •' .. , l -s all' \'a llL'S 

• lkbb ruk ran hl' us1.·d for ,a11a .. . . ·, • . . . • . 
• I 11 ,1ssnu.1tl()n, p:1111..·rn ca1q;on, at1on, pattl'rn classll1cnt1011 

:mJ O\t'r a rangl' ,,t ,,tlwr ~lrl'as. 

flEJDeltaRule 

• An imp1,rtant gl'nerali1ati,,n nf ti , , .. , . . . . . . 
, ll: pu11..plwn t1a111111g algonlhrn was pn.:scnh:d by W1drow 

anJ l ll,tl as thl' kast 11 11:•m s iu· . , 1, • • 
• • 1 ,11 1.. 1. a111111g prnrcdun; also known as the delta ruk . 

• Thl' kamin!! rnk was a,)I, li ·I I ti , ... 1 . . .. 
• t u 1' 11.: ,H aphn- hnl':tr l'll '111l'llt also 1JallllXI Adaline. 

• Thl' pl'rccptron karn in,, ru l, u · , · ti , · I · · · 
;:, L s1.:- 11. output ot I ll.: threshold lu11ct1011 for karn1ng. The delta 

rule uses the nl't output \\ itlwut further mapping into output values - I or + I. 

• Fig. 2.1 A shows :idalinc. 

- 1 +1 +1 

Output 
: +1 

-1-i-- t--- ... 
. J i 

Input 
pattern 

switches 

Gains 
Summer 

-1•) . o+1 
Reference 

switch 

Fig. 2.1.4 Adaline 

Quantizer 

• If the input conductances are denoted by wi• where i = 0, I, 2, ..... n, and input and output 

signals by x
1 
and y, respectively, then the output of the central block is defined to be : 

n 

y = r w, x, + 0 
i-= I 

Where 0 = Wo 

• In a simple physical implementation this device consists of a set of controllable resistors 

connected to a circuit which can sum up currents caused by the input voltage signals. 

TECHNICAL PUBLICA T/ONS® - an up-thrust for knowledge 

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405



l I' 

'' r 

'' I r 

• l h..· \ktl\ ,\11''11 ,,t \ :- \\1th l\' 'I'\'\ I"' \.'.h h \\ \·1~'11 \\ 1 ,, 
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• 

I . I " 

Tl l t,. \' ) \ 
I' 

1 1 1· 1 t ti • , ... ,,, 111•·a11 ,,111:11 l' rt:.: ,~ .. ·lt.t n1!~ t11 .. ·, "' t:11r.:n ;1; ,· '"1ll.\r\'\I \'11,'I' . II,, .I ,,, fl' \'trl'll \l .,... 11; " " 
lornini: pnl,·f,iur(' (lr \\ iJnm-lltilT knninl,! ruk. 

~1~:r!1 ... ·1t~ 

' l); , rn~~;t .. '1.i l .. ·.1:-r.ir.; : ll·.1rr.m; 1, n,,t r1..·l1.1nt l'n l'('ntr.ll \·,,ntn1l l,f the lll'I\H1rk. 
(.):~:;r.~ l .. •,1rr.1::;: \\ ('!ftt:- .m.~ urJJt~J J!t1.'r rr('~1..·nt.1ti,1n tlf cad1 rattem . 

El) Associative Memory Network 
• O:"!'".: ,,ft!":.: rr.;;ur: f:. .. ·ti\':-1:-1..'fth(' hJ in is J~~(,·iJll\C mc111l11-y. Lc:iming can be cn1b1,k1 l·J 

JS .1 rr,, ... ~s l"'f r:,r.::1r:_; .b:-('-'iJt1,,ns bet\, t.'.:n rd.1t1..'J pJttcms . The a~:-.l)l'iati, e mcm u~ 1, 
..:-.. -.:-::r',':--.'J d- .1 .. ·bs:~r 1..'f un:ts "ht.:-h rerre~~nt a simrk n1l,Jd t)f a real bioll)gical neuron 

• .\n .t.,",i.1:n.: n:.:::1\.'ry. a!s .. , k.n,,,,n JS cl,ntcnt-..\JJrcs~abk \kmory (CA\\) can h: 
~.1=-.:~.:-d r:,r .1, .:1!::;: t.'1 J si1:fk r.;em0~· c~dc ratha th:m using a software k),)p. 

• .\.~x-i.1:i, e r.ie:Th.."'ri~s ~:1., irr.;:-kmcnt.:J using net\, t.)rks with or without feedback. Su(h 

"" ~,.. ·- .. ,.. ·' °' ·=· ,,.. 'no~·~ "' ,__ , c ~ • n ... ;;;,u....,., , ••.:> ~ - a .1 ~p-t;irust ,.Jr kno\\ /edge 
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. 
r,, (tr '\J 

"h1.'l\'. ti' rar!,!1.'I \IUlplll 

1, . .-\1.·tn:1I ,,1111,ut 11fth1.· Adalim.' 
r 

• Thi.' d1:ri\ ati,,n 11f Fr " ith t\'Spl.'d 111 l.':ll'h weight w, is 

()F 
_r "11 )x h,· - - - \ r - llr . I 
l I 

• T11 lkl'I\':lSI.' Fl' by gradil'llt descent, the update formula for w, on the P
th 

input-output pattern 

IS 

.\ \\ = I] ( Ir - l\,) \ 

• Till' ddt:1 rnle tril.'s ltl minimize squa1\'d crrnrs. it is also rcforrcd to as the least •~can square 

k;1rninl! prol'rdurc or Widrow-lloff karninj! rule. 

• Fcaturl.'s of the delta mle arc as fi.lllows: 

I. Simplicity 

, Distributl.'d learning: Leaming is nnt reliant on central control of the network. 

3. Online learning: Weights arc updall·d afkr presentation of each pattern. 

fl) Associative Memory Network 

• Oni: of the primary functions of the brain is associative memory. Learning can be considered 

as a process of forming associations between related patterns. The associative memory i~ 

composed of a cluster of units which represent a simple model of a real biolllgical neunm. 

• An associatin! memory, also known as Content-/\ddressable Memory {C/\M) GIil !1l' 

searched for a value in a single memory cycle rather than using a soflwan: loop. 

• Associative memories can be implemented using networks with or without fccdh.1,·~ ~th h 
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. •l1'-·iatin: m:ural 111.:1\,·l,1-ks ar, . I • • · I . • •t 1· 11~~ • ' c u~cl to a:-.soc1atc one set of wl'llH·s \\ 1th a not IL'I sc o 
, L'l'll'rs. say input anJ output patterns. 

1·1,c ·1im <'fan assm:iativc m•' tll()t·y · t 1 . I , , • · 11, • • '"' is, o prn< ucc the assoc1atL·d output pattern " 1encH:t o c 
I• ti , in11ut p·,ttcrns is r d · l1 H.: ' • · app ic lo the neural network. The input pattern may he appltcd Ill the 
•twMk either as input or • • · · · I . · 1· 11~ as mitta state and the output pattern 1s obsL·rn:d at the outputs 0 

some neurons constituting the network. 

• Associative memories belong to class of neural network that learn according lo a certain 
recording algorithm Th•'y r•'q ti ' ., · " · • • • · ·t . t : ••·s 111llst · " " · nc m1ormatmn a pnon and their conncct1v1 y m,1 11c-.. · 

ofien need to be formed in advance. Writing into memory prodm:es changes in the neural 

interconnections. Reading of the stored info from memory named recall , is a transfonnation 
of input signals by the network. 

• All memory infom,ation is spatially distributed throughout the network. Associative 

memory enables a para lid search within a stored data. The purpose of search is to output one 

or all stored items that matches the search argument and retrieve it entirely or partiall y. 

• The Fig. 2.2. l shows a block diagram of an associative memory. 

-

-
Associative 

memory 

Fig. 2.2.1 Block diagram of an associative memory 

• In the initialization phase of the associative memory no info1111ation is stored; ? because the 

info1111ation is represented in the w weights they are all set to zero. 

• The advantage of neural associative memories over other pattern storage algorithms like 

lookup tables of hash codes is that the memory access can be fault tolerant with respect to 

variation of the input pattern. 

• In associative memories many associations can be stored at the same time. There are 

different schemes of superposition of the memory traces fom1ed by the different 

associations. The superposition can be simple linear addition of the synaptic chang~s 

required for each association (like in the Hopfield model) or nonlinear. 

• The perfo1111ance of neural associative memories is usually measured by a quantity called 

info1111ation capacity, that is, the information content that can be learned and retrieved, 

divided by the number of synapses required. 
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• An associative memory is a content-addressable stnicture that lmatp~ spc~i lie i11Pu1 

t t. It is a system t 1a assoc1ai-:s·· 
representations to specific output represen a ions. · · t\\o 

. t d ti , other can be recalled. 
patterns (X, Y) such that when one 1s encoun ere , u.: 

• Associative network memory can be static or dynamic. 

• Static : networks recall an output response after an input has been applied in one foed. 

forward pass and theoretically without dday. They were tenned instantaneous. 

• Dynamic : memory networks produce recall as a result of output/input feedback interaction, 

which requires time. 

• There are two classes of associative memory: auto-associative and hctero-associativc. 

• Whether auto- or hetero-associative, the net can associate not only the exact pattern pairs 

used in training, but is also able to obtain associations if the input is similar to one on which 

it has been trained. 

fJj1 Auto-associative Memory 

• Auto-associative nehvorks are a special subset of the hetero-associative networks, in which 

each vector is associated with itself, i.e. y1 = xi for i= I, ... , m. The function of such networks 

is to correct noisy input vectors. 

• Fig. 2.2.2 shows auto-associative memory. 

• Auto-associative memories are content based memories which can recall a stored sequence 

when they are presented with a fragment or a noisy version of it. They are very effective in 

de-noising the input or removing interference from the input which makes them a promising 

first step in solving the cocktail party problem. 

• The simplest version of auto-associative memory is linear associator which is a hvo-1:iyer 

feed-forward fully connected neural network where the output is constrncted in a single 

feed-foiward computation. 

I r "' i 
X1 X1 

Autoassociative 
network 

I I 

xn \. 
xn 

Fig. 2.2.2 Auto-associative memory 

• Artificial neural networks can be used as associative memories. One of the simplest artificial 

neural associative memory is the linear associator. The Hopfield model anJ Bidirccti1111al 

Associative Memory (BAM) models are some of the other popular arti ticial neural nct\\ (1tl 

models used as associative memories. 
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Networks and Deep Learning 2 - 9 Associative Memory and Unsupervised Loaming Notwork., fflJ Hetero-as~~ciative Memory Network 
• J-{etero-associative networks map "m" input vectors x', x2 

, ... , xm in n-dimcnsiona\ ~pace to t I 2 m. . i i m output vec ors Y , Y , ... ,y m k-dnnensional space, so that X -> y. · . 
• If \I X - Xi 1\

2 
< E then x - Yi . This should be achieved by the \earning a\gorithm, but 

becomes very hard when the number m of vectors to be learned is too high. 
• fig. 2.2.3 shows block diagram of hetero-associative network. 

Heteroassociative 
network i 

---Yk 

Fig. 2.2.3 Auto-associative memory 

• Fig. 2.2.4 shows the structure of a hetero-associative network without feedback. 

Fig. 2.2.4 Hetero-associative network without feedback 

. tive network without feedback . 2 2 5 Hetero-assoc1a Fig. · · 
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f JIJ Tho Hopfiold Not work 
. . ,J hyncd rct.w, t 1,I ,,r.1·111,rk, f .1k~ 11,,~;, ·;~11.,::t1·11: ru .::,1,:1 • The llopfitld 111odcl I .. II /. Ill} . C ' . 

II 
... 1·· I wilh lllilm1priatc wcip,hl<i i11!,l t;ad ,,f L1:11,;1. 1,:,11,,:d 

usua y 111111a 11.ct 

IN . k (IINN) j4 a rrn,dcl ,,t 1,111" ;,,.·;1,c1:,11·11; tt1f:11i1,r'j, ft,~;, ~ir./': ,..: , 
• I lopficld Ncurn c.two1 · . • -' 

I k ·,1 1··c<lh·1l'k4 f,'iu 2.2.f, d1t1 W\; I 11,1,f ,dd rir;f ·11, ,r~ ,,f rl.r,;.1: •.: .i'. i, 
ncura nctwor w1 1 c ' · · u 1 • 

I hipficld network is created by s11pplyi1,v, 111p1JI d;1t:1 v1:<.,11,r ;. ,,r f1i1'!ur, ,t: .':,• 

corresponding to the different <.;la«.!->e4, ·r hcsc pi1llc11n ,ire t.;,lbJ d:1·:·1 r,:,tt,;r,,·; 

Unrt 1 

i, 
·, 
~1 ·: 

t---w-, .-
1 
--0 

Unit 2 Unit 3 

Fig. 2.2.6 Hopfiold notwork of thrc:o unih 

• llopficld model com,i~ts of a ~ingl<.: laycr ,,f pr,,t.c·,,,ing ckrr,u,h •,1,kn; t;:d, v .. · 

connected to every other unit in the network othcr than it'.d f. 

• The output of em.:h m:uron is a hi nary nurnhcr in ( I, I} . ·1 he "utp 11t H:<..t,1r I') tr.•; 

vector, Starting from an initial ~late (given a", the: input vc:c.tr,r), the: t, t.;,1lf; r,f th::: r.,:;t,. , r£ 

changes from one to another like an autc,mat,111. If the \t,1tc (..(,nvcrgt:\, the rJl',int t,, ·;,fw.· · 

converges is called the attractor. 

• In its simplest form, the output function i.., the \ign func..tt<Jn, v. h1d1 yit:ld·, I for t1rg J:-:- : .. . 

0 and - I otherwise. 

• The connection weight matrix W of this type of network i-.; <;qua re and ,:, rnrnctnc. H . .: ,. - ·. 

in the I lopficld model act as both input and output unit,. 

• A llopfield network consi~ts of "n" totally coupled unit .... Lac..h unit 1·, c,,nncc.tt:d tci a!I < •• •• 

units except itself. The network is symmetric hccau\c the wcig,ht w,
1 

for the uir.r :.:. · 

between unit i and unit j is equal to the weight w,, of the c<,nncttirin frc,m unit J tc, ur,it I r·. 
absence of a connection from each unit to itself avoids a permanent f<.:~dbalk <if ih <i..1.:i , ;: . 

value. 

• llopficl<l networks arc typically U!->c<l for clas, i ficat ion pn,hlcms 1th hmary p;ittun \ lL: 

• I lopficl<l model is classified into two categories: 

l . Discrete I lopficl<l Model 

2. Continuous 1 loplicl<l Model 

TECHNICAL PUBLICA TION:f">. an 11r1·ft,rut,t for lmnw/1:•I,;~ ·--·· ·- . -
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--- Associative Memory and Unsupervised Learning Networ s 

In both discrete and conti H · 
• nuous opfield network weights trained in a one-shot fashion and 

not trained incrementally a d · 
s was one m case of Perceptron and M LP. 

• In the discrete Hopfield mod I h . . . · · fu t· 
e , t e units use a slightly modified bipolar output nc ion 

where the states of the u ·t · • · · 
01 s, 1.e., the output of the umts remam the same If the current state 

is equal to some threshold value. 

• The continuous Hopfield m d I · · . . • H th units 
0 e is Just a generahzat1on of the discrete case. ere, e 

use continuous output function such as the sigmoid or hyperbolic tangent function. In the 

contmuous Hopfield model, each unit has an associated capacitor Ci and resistance ri that 

model the capacitance and resistance of real neuron's cell membrane, respectively. 

flll Bidirectional Associative Memory (BAM) 

• BAM consists of two layers, x and y. Signals are sent back and forth between both layers 

_until an equilibrium is reached. Equilibrium is reached if the x and y vectors no longer 

change. Given an x vector the BAM is able to produce the y vector and vice versa. 

• BAM consists of bi-directional edges so that information can flow in either direction. Since 

the BAM network has bidirectional edges, propagation moves in both directions, first from 

one layer to another, and then back to the first layer. Propagation continues until the nodes 

are no longer changing values. 

• Fig. 2.2. 7 shows BAM network. 

• Since the BAM also uses the traditional Hebb's learning rule to build the connection weight 

matrix to store the associated pattern pairs, it too has a severely low memory capacity. 

y 

X 

Fig. 2.2. 7 BAM network 

• BAM can be classified into two categories : 

Second layer 

First layer 

1. Discrete BAM : The network propagates an input pattern X to the Y layer where the 

units in the Y layer will compute their net input. 
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- ,,,, 

2. Conflnuous HAM : The unils use the sigmoid or hyperbolic tangent output fu ri1., 

The 1111i1s in lhc X layer have an exlra cxlernal input Ji , while ~he units in the y 1_",r 
'l'j 

have an ex Ira external input J
1 

for i = I, 2, ... , m and j = I, 2, ... , n. ':r 

TIH.·sc cxlra cxlcrnal inputs lead lo a modification in the computation of thc net input 1,1 111
, 

units. 

f IIJ Difference Between Auto-associative Memory and 

Hetero-associative Memory 
. 

Auto-associative memory Hetero-associativc memory ,_ ___________________ _____ 
The inputs and output vectors s and t arc the 

same 

The inputs and output vectors s and t are 

different. 

J-~-~----------------- -------

Recalls a memory of the same modality as 

the one that evoked it 

Recalls a memory that is different in character 

from the input 

1------------------------- -----
A picture of a favorite object might evoke a A particular smell or sound, for example, might 

mental image of that object in vivid detail evoke a visual memory of some past event 

An auto-associative memory retrieves the 

same pattern 

-
Hetero-associative memory retrieves the stored 

pattern -
Example: color correction, coJor constancy Example: I. Space transfonns : Fourier, 

2. Dimensionality reduction : PCA 

flJ Kohonen Self-Organizing Feature Maps 

• Kohoncn self organizing networks arc also called Kohoncn features ,rnps or topolo~ 

preserving maps arc used to solve competition based network paradigm for data clustering 

• The Kohoncn model provides a topological mapping. It places a fi xed number of inr~· 

patterns from the input fayer into a higher-dimensional output or Kohonen layer. 

• ~raining in the Kohonen network begins with the winner's neighbourhood of a fairly l.irf• 

size. Then, as training proceeds, the neighbourhood size gradually decreases. 

• Fig. 2,3. J shows a simple Kohoncn If · · 
. se orgamzmg network with 2 inputs and -19 ,1utrur, 

TI1e Jeammg feature map is similar to that of competitive learning networks. 

------- ,rE~C;H.;'f.l;-,_1C;~-;L ;PU~'B;L::,c::,1::r,:oN::s®:;--------- --- - -· -
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--------------------

(a) (b) 

Fig. 2.3.1 Simple Kohonen self organizing network 

• A similarity measure is selected and the winning unit is considered to be the one with thc 

largest activation. For this Kohonen features maps all the weights in a neighborhood 

around the winning units are also updated. The neighborhood's size generally decreases 

slowly with each iteration. 

• Step for how to train a Kohonen self organizing network is as follows : 

For n-dimensional input space and m output neurons : 

1. Choose random weight vector wi for neuron i, i = 1, ... , m 

2. Choose random input x 

3. Determine winner neuron k : 11 wk - x 11 = mini 1 1 wi - x 11 (Euclidean distance) 

4. Update all weight vectors of all neurons i in the neighborhood of neuron 

(k : wi : = wi + ll · (j) (i,k) · (x - w)) (wi is shifted towards x) 

5. If convergence criterion met, STOP. Otherwise, narrow neighborhood function and 

learning parameter ll and go to (2). 

Competitive learning in the Kohonen network 

• To illustrate competitive learning, consider the Kohonen network with 100 neurons arranged 

in the form of a two-dimensional lattice with 10 rows and 10 columns. The network is 

required to classify two-dimensional input vectors - each neuron in the network should 

respond only to the input vectors occurring in its region. 

• The network is trained with I 000 two-dim~nsional input vectors generated randomly in a 

square region in the interval between -I and + 1. The learning rate parameter a is equal to 

0.1. 

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge 

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405



2 - 1.4 

, 

I 
I 

Fw.. 2.3.2 

-: .. ~ ·- ~ - ._•--..- •- .___ 
-- ~ . ~ I I I I / • 

": .. • 1 1 \----....~-1•- r- ·-- - 1 

•- ~- .-r-·-:-• ~" T T 
.. , '. • - • - • - ~ • --- I \ • - • 

I I I • I · - •- •- ~ I 
• ,L • - • - • I \ \ ," • 

•- •- - •- •- \ 
. 

. I \ , i • - . - • ........... 
,, ; .. • - • - • - .-• - · -- I \ l 

/ I I / \ - • -

- ~;. •- • •- !- •- ._J_. ___ I I 
.. ,: ,~ I I \ I I \ · -- · 

•- •-- •- •--~ •- •- • \ I 
- .. ,, '·. I 

I 
I I / / \ ,--- • - • r--i- r-·j--, ~ i--• ' ' 

.. .. , , - . - • I-- •- •- • 
• - • - • - • ·- • • / I I - - •-- •- · 

ri9 . 2 J J 

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405



Neural Networks and Deep Learn ing 2 _ 15 
:-- Associative Memory and Unsupervised Learning Networks 

SJ Learning Vector Quantization 

Learnin° Vector Quanti t· (LVQ · · b d 
• 0 za ion ) 1s adaptive data classification method. It 1s ase on 

training data with desired class information. 

L VQ uses unsupe · d d · d b · • rvise ata clustenng techniques to preprocesses the data set an ° tam 
cluster centers. 

• fig. 2.4. l shows the net\vork representation of LVQ. 

• Here input dimension is 2 and the input space is divided into six clusters. The first two 

clusters belong to class l , while other four clusters belong to class 2. 

• THE L VQ learning algorithm involves t\vo steps : 

l. An unsupervised learning data clustering method is used to locate several cluster centers 

without using the class information. 

2. The class information is used to fine tune the cluster centers to minimize the number of 

misclassified cases. 

• The number of cluster can either be specified a priori or determined via a cluster technique 

capable of adaptively adding new clusters when necessary. Once the clusters are obtained, 

their classes must be labeled before moving to second step. Such labeling is a achieved by 

,·oting method. 

learning method : 

· Output units 

Fig. 2.4.1 LVQ 

• The weight vector (w) that is closest to the input vector (x) must be found. If x belongs to 

the same class, we move w towards x; otherwise we move w away from the input vector x. 

Step I : f nitialize the cluster centers by a clustering method. 

Step 2 : Label each cluster by the voting method. 
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· 
. t x and find k such that 11 x _ 

• Step J : Randomly select a training mput ,,ec or 
'\ I/ 

is a minimum. 
b 

• Step 4 : If x and wk belongs to the same class, update wk y 

i'.l wk = N (x - Wk) 

Otherwise update wk by 

i1 wk = - TJ (X - wk) 
. · · ached stop. Othenvise ret 

Step 5 : If the maximum number of 1terat1ons 1s re ' 
urn 

to step 3. 

fD Counter Propagation Networks 

• The counter propagation network is a hybrid network. It consists of an outStar network and a 

competitive filter network. It was developed in 1986 by Robert Hecht-Nielsen. 

• Counter propagation networks multilayer networks based on a combination of input, 

clustering and output layers. This network can be used to compress data, to approximate 

functions or to associate patterns. 

• CPN is an unsupervised winner-take-all competitive learning network. 

• The hidden layer is a Kohonen network with unsupervised learning and the output layer is a 

Grossberg (outstar) layer fully connected to the hidden layer. The output layer is trained by 

the Widrow-Hoff rule. 

• The counter propagation network can be applied in a data compression approximation 

functions or pattern association. 

• Three major components : 

I. lnstar : Hidden node with input weights. The instar is a single processing element that 

shares its general structure and processing functions with many other processing 

· elements 

2. Competitive layer: Hid~en layer composed of instars 

3. Outstar: A structure · 

• Counter propagation networks training include two stages : 

I. Input vectors are clustered. Clusters are formed using dot prod t t · E 1 ·d 
uc me nc or uc , ean 

norm metrics. 

2. Weights from cluster units to outputs units are made to produc th d . d 
e e es1re response. 

• Counter Propagation Operation : · 

I. Present input to network 

2. Calculate output of alJ neurons i~ Kohonen layer 

-~------T.T5BC;H.;'N.WiiC.~J1~L~P~UM'B~L~IC.;J1~T.;JO~N;si®>.-:a:-n~up=--=1h_ru_s~t 8.:-k---_: _______ _ 

,or now/edge 
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3. Ddcnninc winner (nt:uron witl , . 
l m<1x1mum output) 

4. Set output of winner to I (others to O) 

5. Cukulate output vector 

• Counter propagation networks arc of two types : 

I. Full counter propagation 

2. Forward counter propagation 

1. full counter-propagation network (CPN). 

• The Full CPN allows to produce a correct output even when it is given an input vector that 

is partially incomplete or incorrect. 

• Full counter-propagation was developed to provide an efficient method of representing a 

large number of vector pairs, x: y by adaptively constructing a lookup table. 

• It produces an approximation x* : y* based on input of an x vector or input of a Y vector 

only, or input of an x:y pair, possibly with some distorted or missing elements in either or 

both vectors. 

• In first phase, the training vector pairs are used to form clusters using either dot product or 

euclidean distance. If dot product is used, normalization is a must. 

• This phase of training is called as In star modeled training. The active units here are the 

units in the x-input, z-cluster and y-input layers. The winning unit uses standard Kohonen 

learning rule for its weigh updation. 

• During second phase, the weights are adjusted between the cluster units and output units. 

• ln this phase, we can find only the J unit remaining active in the cluster layer. 

. • The weights from the winning cluster unit J to the output _units are adjusted, so that vector of 

activation of units in the y output layer, y*, is approximation of input vector y; and x * is an 

approximation of input vector x. 

• The architecture of CPN resembles an instar and outstar model. 

• The model which connects the input layers to the hidden layer is called Instar model and the 

model which connects the hidden layer to the output layer is called_Outstar model. 

• The weights are updated in both the Instar (in first phase) and Outstar model (second 

phase). The network is fully interconnected network 

2. Forward Counter Propagation Network : 

• It may be used if the mapping from x toy is well defined, but the mapping from y to x is not. 

In this network, after competition only one unit in that layer will be active and send a signal 

to the output layer. 
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t. tworks · 
• Possible drawback of counter propaga ion ne · 

. . . twork has the same difficulty associated with train· 
l. Trammg a counter propagation ne 1ng 

a Kohonen network. 
2. Counter propagation networks tend to be larger than back propagation networks. If a 

certain number of mappings are to be learned, the middle layer must have that lllany 

numbers of neurons. 

fl) Adaptive Resonance Theory Network 

• Gail Carpenter and Stephen Grossberg (Boston University) developed the Adaptive 

Resonance learning model. How can a system retain its previously learned knowledge while 

incorporating new information. 

• Adaptive resonance architectures are artificial neural networks that are capable of stable 

categorization of an arbitrary sequence of unlabeled input patterns in real time. These 

architectures are capable of continuous training with non-stationary inputs. 

• Some models of Adaptive Resonance Theory are : 

l. ARTl - Discrete input. 

2. ART2 • Continuous input. 

3. ARTMAP • Using two input vectors, transforms the unsupervised ART model into a 

supervised one. 

• Various others : Fuzzy ART, Fuzzy ARTMAP (F ARTMAP), etc ... 

• The p~mary intuition be~ind the ART model is that object identification and recognition 

generally occur as a result of the interaction of 'top-down' observer expectations with 

'bottom-up' sensory information. 

• The basic ART system is an unsupervised learning model. It typically consists of a 

comparison field and a recognition field composed of neurons, a vigilance parameter, and a 

reset module. However, ART networks are able to grow additional neurons if a new input 

cannot be categorized appropriately with the existing neurons. 

• ART networks tackle the stability-plasticity dilemma : 

I. Plasticity : They can always adapt to unknown inputs if the given input cannot be 

classified by existing clusters. 

2. Stability : Existing clusters are not deleted by the introduction of new inputs. 

3. Problem : Clusters are of fixed size, depending on p. 

• Fig. 2.6.l shows ART-1 Network. 
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1 Networks and Deep Learning 2 _ 19 Associative Memo,y and Unsupervised Learning Networks 

ART-I networks, which re · b. . . 
• . ceive mary input vectors. Bottom-up weights are used to 

determine output-layer candid t h 
a es t at may best match the current input. 

Top-down weights represent th " 
• e prototype" for the cluster defined by each ou.tput neuron. 

A close match between input d . · 
an prototype ts necessary for categorizing the input. 

Output layer 

Input layer 

Fig. 2.6.1 ART 1 network 

• Finding this match can require multiple signal exchanges between the two layers in both 

directions until "resonance" is established or a new neuron is added. 

• The basic ART model, ART!, is comprised of the following components: 

I. The short term memory layer : FI - Short term memory. 

2. The recognition layer : F2 - Contains the long term memory of the system. 

3. Vigilance Parameter: p - A parameter that controls the generality of the memory. Larger 

p means more detailed memories, smaller r produces more general memories. 

Types of ART : 

Type 

ART I 

ART2 

ART3 

Fuzzy ART 

Remarks 

ft is the simplest variety of ART networks, accepting only binary inputs. 

Extends network capabilities to support continuous inputs. 

ART 3 builds on ART-2 by simulating rudimentary neurotransmitter 

regulation of synaptic activity by incorporating simulated sodium (Na+) 

an<l calcium (Ca2+) ion concentrations into the system's equations, which 

results in a more physiologically realistic means of partially inhibiting 

categories that trigger mismatch resets. 

Fuzzy ART implements fuzzy logic into ART's pattern recognition, thus 

enhancing generalizability 

TECHNICAL PUBLICA T/ONS® - an up-thrust for knowledge 

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405
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.. . . ~ "1 

ARTMAP ft is also known as Predictive ART, combmes two slightly llloct· 
d I · t 1fied 

ART-I or ART-2 units into a supervise earnings ructure where th 
. k h e fir 

unit takes the input data an~ ~he second ~mt ta _es t e correct output da st 

then used to make the mlillmum possible adjustment of the vig•i ta, 
• • i anc 

parameter in the first unit in order to make the correct class1ficat1on. e 

FuzzyARTMAP Fuzzy ARTMAP is merely ARTMAP us~g fuzzy ART units, resultin . 
. ffi . g 11) 

a corresponding increase m e 1c1ency. 

flJ Two Marks Questions with Answers 

Q.1 What is recall ? 

Ans. : If the input vectors are uncorrelated, the Hebb rule will produce the correct weights and 

the response of the net when tested with one of the training vectors will be perfect recall 

Q.2 Explain learning vector quantization. 

Ans. : L VQ is adaptive data classification method. It is based on training data with desired class 

infonnation. L VQ uses unsupervised data clustering techniques to preprocesses the data set and 

obtain cluster centers. 

Q.3 What is meant by associative memory ? 

Ans. : An associative memory can be considered as a memory unit whose stored data can be 

iden_tified for access by the content of the data itself rather than by an address or m~mory 

location. Associative memory is often referred to as Content Addressable Memory (CAf\f). 

Q.4 Define auto associative memory. 

Ans. : This is a single layer neural network in which the input training vector and the output 

target vectors are the same. The weights arc determined so that the network stores a sd of 

patterns. If vector "t" is the same as" s", the net is auto-associative. 

Q.S What ls Hebbian learning ? 

Ans. : Hebb rule is the simplest and most common method of determining weights for an 

associative memory neural net. It can be used with patterns arc represented as either bi1m y or 

bipolar vectors. 

Q.6 What Is Bidirectional Associative Memory (BAM) ? 

Ans. : Bidirectional associative memory first proposed by Bart Kosko, is a hetcro-assol'ia1i,c 

network. It associates patterns from one set, set A, to patterns from another set, set B anJ rii:c 

versa. Like a Hopficld network, the BAM can generalize and also produce correct outpuls 

despite corrupted or incomplete inputs. 
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. / N,•1,11 111.<: {llld /)PP/I/ r •.1111111,} ,, t 1 1111,1 fir-II'• ''' '~<; 
Nt'''''' ,. \V111.1 /1,m Mr ·n11,ry ,1fli11 lw,111., rv,•_ , ,, r•,lf ' ---------==-----~..:._ ______ --, 

Q 7 L111t tho prol.Mni i of DAM network . 

Sh11,,FL' l, tpa t 11) id 11,l. HAM I hl' n1,1,1111111n 1111111hrr nf ,l'-'-"l 1;1t1n11, '" t,c , 11,rcd 111 tlil' 

l\Al\1 :-.llllllld 1101 C\l t'l·d th<: 1111111hl r 1,f 11rnr1111, 111 tlw ,m.ilkr !.,~er 

, lnrolll'l.'I l'lll1\L'ffl ' lltl' I lic HAM 111;1y 111,t alv.,t),rrod11ll' tlil' t lil 'l' ' ""'tlll,ltlnll 

Q.8 What Is content -addressable memory ? 

Ans.: 

• A Cl1nh.'11l-addrl '\\,1hh: llll'lllnl y 1, a lypc of rm 111111 Y th.it alln\\', fnr the rct all of d.11.1 h.1,rd 

llll the dl' grl'l' or :-. 11111 l.1111y hct,,n 11 1111: 1111rnt p ,tllllll ;111d th l' patll rn , "'"rrd Ill llll'lllPr ) 

, It rckr s to a mrnH11y Olfan 1;; 1t11111 111 \\hli h the fill ninry ,., ;Ht c,,r d hy ,, ., t(IJJtt nt a, 

opp1lSl'd In an c ,pli r ,t add1l' '-" l1~c 111 thl' t1ad1t1on.tl l <1111p11fl r 111c 111nry '-)" tun 

I l'IH.:rdur c, tlrn, type or 11ll'lllOI Y ;tllm,, the reLa ll of 111f111111.it1u 11 l1J'-' ,t fltl r ,11lr.d 

knowledge of it :-. rnnll'nh 

Q.9 What are the delta rule for pattern association ? 

Ans.: 

• When the input wcton, :ire lrni:arly indi:prndrnt, the delta rule produu ;-, l:Xall -,()Jut111n-, 

• Whether the input vectors arc linearly independent or not, the delta rule produlc" a lca-,t 

squares solution, i.e., it optimi7e::. for the lowest sum of lea-,t -,quarcd error-,. 

Q.10 What is continuous BAM ? 

Ans. : Continuous BAM transforms input smoothly and continuou-,ly into output in the range 

[O, I] using the logistic sigmoid function as the activation function for all units. 

Q.11 What are the delta rule for pattern association ? 

Ans.: 

• When the input vectors are linearly independent, the delta rule produces exact solution-,. 

• Whether the input vectors are linearly independent or not, the delta rule produces a lea~t 

squares solution, i.e., it optimizes for the lowest sum of least squared errors. 

Q.12 Which are the rules used in Hebb 's law ? 

Ans. : Rules : 

I. If two neurons on either side of a connection are activated synchronously, then the 

weight of that connection is increased. 

2. Jf two neurons on either side of a connection are activated asynchronously, then the 

weight of that connection is decreased. 
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s 

ation network ? 
Q.13 What do you mean counter propag . . 

. , k ultilayer networks based on a comb111at1on of inpt 
Ans. : Counter propagation netv. or s m It, 

. 1 
Th's network can be used to compress data, to approxirnai 

clustcrmg and output ayers. 1 · 
c 

functions or to associate patterns. 

Q.14 What Is Hopfield model? 

Ans. : The If opficld model is a single-layered recurrent network. Like the associative mc111ory, 

it is usually initialized with appropriate weights instead of being trained. 

Q.15 Define Self-Organizing Map. 

Ans. : The Self-Organizing Map is one of the most popular neural network models. It belongs to 

the category of competitive learning networks. The Self-Organizing Map is based 011 

unsupervised learning, which means that no human intervention 1s needed during the learning 

and that little needs to be known about the characteristics of the input data. 

Q.16 What is principle goal of the self-organizing map ? 

Ans.: The principal goal of the Self-Organizing Map (SOM) is to transform an incoming signal 

pattern of arbitrary dimension into a one - or two-dimensional discrete map and to perform this 

transformation adaptively in a topologically ordered fashion. 

Q.17 List the stages of the SOM algorithm. 

Ans.: 

I. Initialization - Choose random values for the initial weight vectors wj. 

2. Sampling - Draw a sample training input vector x from the input space. 

3. Matching - Find the winning neuron I(x) with weight vector closest to input vector. 

~Wji = ll(t) Tjl( xi(t) (xi - wJi) 

4. Updating - Apply the weight update equation 

5. Continuation - Keep returning to step 2 until the feature map stops changing. 

Q.18 Explain an essential ingredients and parameters of the SOM algorithm. 

Ans.: An essential ingredients and parameters of the SOM algorithm are as follows: 

I. Continuous input space of activation patterns that are generated in accordance with a 

certain probability distribution; 

2. Topology of the network in the fonn of a lattice of neurons, which defines a disc;ete 

output space; 

3. Time - varying neighborhood function hj i(x)(n) that is defined d · · 
, aroun a wmnmg 

neuron i(x); 

4. Learning - rate parameter that starts at an initial value and then d d 11 · I 
. ecreases gra ua y wt t 1 

ttme, but never goes to zero. 
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a 19 How does coun ter -prop.:tgation n t . 
· o s are tr;un('d ? 

•ns .: C1111111l·r-p111p,1t'.,1t1,1n 1w1-, ,Ill" Ir 1111 • 1 ,.. • ll Ill l\\11 '-1.11.'t'\ 
t I 11'I , 1:-tfl' I hr 111p11t , t· 1 , 1 • I 1 

l '" ,Ill' l 11,h'rld I hl·, h1,h'r, 1h.1l .11,· t,111111·d 111.I) hl• '-1"" 
llll r1tlK·r tht· d11t pr,,d11 l I rnrti, 11 . 1 1 l 11r ll 11, 11k.111 11111111 111t' l111 

., Sl·n111d ,t.tfr . l lw "r1 •I i t I t 
• · 1' r,,rn th' l hhh'r 11111h i., thl· 1, 11 q,11t 11111h ,Il l' .1d.1p1,·, h 1 

p111,l111·l· tlw dl· ,11 1·d fl•,p, ,11,l, 

Q.20 List the possible drawback of counter -propagation nctwo1 ks 

Ans. : 

• T1ai11111g a n 11111tn -p1,1p.1~.1111111 lh'l\\1•11.. h." th1· ,.1111,· d1ll111111, ., ... ,,,, i.11,·d "i lh 11.11111111'. a 
K11hn11.:n 1wt" 111 I.. 

• (\ 11111tl'r•('l'\lpaf.t llllll lll'l\\ 1111,., knd hi h,· l.11r,·1 lh.111 1,.,,~p1,111.1r, 11 1t111 lll'l\\\11~' II ,I 

r.:rtain 1111111h1·r 11r 111,lp('III~, ,Ill' 1\1 b,· k,llllt'1I. th,· 1111ddlt· l.l\l'I 11111,1 h,l\ l' th.ti 111,111y 
tlllllllWr ,,r lll' llr1ll1\, 

Q.21 How forward-only differs form full counter -propagation n<'IS ? 

Ans.: 

• ln full .:11untl't'•('l\'1':1g.1t11111. ,1111~ lhl· \. \\'1 ·11,,, 111 t,11111 th,: 1 lu,1l'1, 1111 1h.: Knl11111l'II 11111h 
during th.: tir.-t :--t.1g.: ,,r tr.1111111~. 

• Th.: 11riginal prl':--l'lll.1t1,111 ,,r t~1n, .1rd-111tl) l'1lll llk r-p1 np,1~.111 ,111 lh l'd thl' I 11d1dran 

dist:HKe bet\\ l'l'll th.: 111p111 , l't'l11r and thl· "ei ght , l'l·tor for 1hr KolhHIL'll 111111. 

Q.22 What is forward only counter-propagation ? 

Ans.: 

• Is a simplitiL·d, ersi011 of 1hr full rnunk·rpwpagati,,n 

• Arc intcndrd to appru, imat.:) = ll \ ) t1.111l·ti1111 that is not lll't'l':--sarily imertibk . 

• It ,my he u:-ed if 1he mapping from , tl1 y is well defined. but th.: 111:1pping from y t0 , i:-. 

not. 

Q.23 Define plasticity. 

Ans.: The ability of a net to resplmd 1L1 k :1m a nrw pallrm L'qu:1lly well at any stage of karnm g 

is called plasticity. 

Q.24 List the components of ART1. 

Ans. : Components are as follows : 

I. The short km1 memory byrr tFI) 

, The recognition [3ycr ( F2) : It contains the long tmn mrmory of the system. 

3. Vigilance Parameter ( p ) : A p:ir:1meter th:it controls the generality of the memory. 

Larger p means more dctaikd memories. smaller p produces more general memories. 
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Spiking Neural Networks 

What is Spiking Neural Network (SNN)? 

Artificial neural networks that closely mimic natural neural networks are known as spiking 

neural networks (SNNs). In addition to neuronal and synaptic status, SNNs incorporate time into 

their working model. The idea is that neurons in the SNN do not transmit information at the end 

of each propagation cycle (as they do in traditional multi-layer perceptron networks), but only 

when a membrane potential – a neuron’s intrinsic quality related to its membrane electrical 

charge – reaches a certain value, known as the threshold. 

The neuron fires when the membrane potential hits the threshold, sending a signal to neighboring 

neurons, which increase or decrease their potentials in response to the signal. A spiking neuron 

model is a neuron model that fires at the moment of threshold crossing. 

 

SNN with connections and Biological Neuron 

Artificial neurons, despite their striking resemblance to biological neurons, do not behave in the 

same way. Biological and artificial NNs differ fundamentally in the following ways: 

https://analyticsindiamag.com/6-types-of-artificial-neural-networks-currently-being-used-in-todays-technology/
https://www.researchgate.net/figure/A-Spiking-Neural-Networks-and-their-connections-versus-B-Biological-neurons-taken-from_fig2_330926855


 Structure in general 
 Computations in the brain 
 In comparison to the brain, learning is a rule. 

Alan Hodgkin and Andrew Huxley created the first scientific model of a Spiking Neural 

Network in 1952. The model characterized the initialization and propagation of action potentials 

in biological neurons. Biological neurons, on the other hand, do not transfer impulses directly. In 

order to communicate, chemicals called neurotransmitters must be exchanged in the synaptic 

gap. 

How Does Spiking Neural Network Work? 

Key Concepts  

What distinguishes a traditional ANN from an SNN is the information propagation approach. 

SNN aspires to be as close to a biological neural network as feasible. As a result, rather than 

working with continually changing time values as ANN does, SNN works with discrete events 

that happen at defined times. SNN takes a set of spikes as input and produces a set of spikes as 

output (a series of spikes is usually referred to as spike trains). 

The general idea is as; 

 Each neuron has a value that is equivalent to the electrical potential of biological neurons at any 
given time. 

 The value of a neuron can change according to its mathematical model; for example, if a neuron 
gets a spike from an upstream neuron, its value may rise or fall. 

 If a neuron’s value surpasses a certain threshold, the neuron will send a single impulse to each 
downstream neuron connected to the first one, and the neuron’s value will immediately drop 
below its average. 

 As a result, the neuron will go through a refractory period similar to that of a biological neuron. 
The neuron’s value will gradually return to its average over time. 

Spike Based Neural Codes 

Artificial spiking neural networks are designed to do neural computation. This necessitates that 

neural spiking is given meaning: the variables important to the computation must be defined in 

terms of the spikes with which spiking neurons communicate. A variety of neuronal information 

encodings have been proposed based on biological knowledge: 

 Binary Coding:   

Binary coding is an all-or-nothing encoding in which a neuron is either active or inactive within 

a specific time interval, firing one or more spikes throughout that time frame. The finding that 

physiological neurons tend to activate when they receive input (a sensory stimulus such as light 

or external electrical inputs) encouraged this encoding. 

 Rate Coding: 



Only the rate of spikes in an interval is employed as a metric for the information communicated 

in rate coding, which is an abstraction from the timed nature of spikes. The fact that 

physiological neurons fire more frequently for stronger (sensory or artificial) stimuli motivates 

rate encoding.  

 Fully Temporal Codes 

The encoding of a fully temporal code is dependent on the precise timing of all spikes. Evidence 

from neuroscience suggests that spike-timing can be incredibly precise and repeatable. Timings 

are related to a certain (internal or external) event in a fully temporal code (such as the onset of a 

stimulus or spike of a reference neuron). 

 Latency Coding 

The timing of spikes is used in latency coding, but not the number of spikes. The latency 

between a specific (internal or external) event and the first spike is used to encode information. 

This is based on the finding that significant sensory events cause upstream neurons to spike 

earlier. 

SNN Architecture 

Spiking neurons and linking synapses are described by configurable scalar weights in an SNN 

architecture. The analogue input data is encoded into the spike trains using either a rate-based 

technique, some sort of temporal coding or population coding as the initial stage in building an 

SNN.  

A biological neuron in the brain (and a simulated spiking neuron) gets synaptic inputs from other 

neurons in the neural network, as previously explained. Both action potential production and 

network dynamics are present in biological brain networks. 

 



The network dynamics of artificial SNNs are much simplified as compared to actual biological 

networks. It is useful in this context to suppose that the modelled spiking neurons have pure 

threshold dynamics (as opposed to refractoriness, hysteresis, resonance dynamics, or post-

inhibitory rebound features). 

When the membrane potential of postsynaptic neurons reaches a threshold, the activity of 

presynaptic neurons affects the membrane potential of postsynaptic neurons, resulting in an 

action potential or spike. 

Learning Rules in SNN’s 

Learning is achieved in practically all ANNs, spiking or non-spiking, by altering scalar-valued 

synaptic weights. Spiking allows for the replication of a form of bio-plausible learning rule that 

is not possible in non-spiking networks. Many variations of this learning rule have been 

uncovered by neuroscientists under the umbrella term spike-timing-dependent plasticity (STDP). 

Its main feature is that the weight (synaptic efficacy) connecting a pre-and post-synaptic neuron 

is altered based on their relative spike times within tens of millisecond time intervals. The weight 

adjustment is based on information that is both local to the synapse and local in time. The next 

subsections cover both unsupervised and supervised learning techniques in SNNs. 

Application of Spiking Neural Networks 

In theory, SNNs can be used in the same applications as standard ANNs. SNNs can also 

stimulate the central nervous systems of biological animals, such as an insect seeking food in an 

unfamiliar environment. They can be used to examine the operation of biological brain networks 

due to their realism.  

Advantages and Disadvantages of SNN 

Advantages 

 SNN is a dynamic system. As a result, it excels in dynamic processes like speech and dynamic 
picture identification. 

 When an SNN is already working, it can still train. 
 To train an SNN, you simply need to train the output neurons. 
 Traditional ANNs often have more neurons than SNNs; however, SNNs typically have fewer 

neurons. 
 Because the neurons send impulses rather than a continuous value, SNNs can work incredibly 

quickly. 
 Because they leverage the temporal presentation of information, SNNs have boosted 

information processing productivity and noise immunity. 

Disadvantages 

 SNNs are difficult to train.  
 As of now, there is no learning algorithm built expressly for this task. 



 Building a small SNN is impracticable. 

Convolutional Neural Networks 

What is a Neural Network? 

Neural networks are modeled after our brains. There are individual nodes that form the layers in 

the network, just like the neurons in our brains connect different areas. 

Neural network with multiple hidden layers. Each layer has multiple nodes. 

The inputs to nodes in a single layer will have a weight assigned to them that changes the effect 

that parameter has on the overall prediction result. Since the weights are assigned on the links 

between nodes, each node maybe influenced by multiple weights. 

The neural network takes all of the training data in the input layer. Then it passes the data 

through the hidden layers, transforming the values based on the weights at each node. Finally it 

returns a value in the output layer. 

It can take some time to properly tune a neural network to get consistent, reliable results. Testing 

and training your neural network is a balancing process between deciding what features are the 

most important to your model. 

 

What is Convolutional Neural Network? 

A convolutional neural network is a feed-forward neural network that is generally used to 

analyze visual images by processing data with grid-like topology. It’s also known as a ConvNet. 

A convolutional neural network is used to detect and classify objects in an image. 

Below is a neural network that identifies two types of flowers: Orchid and Rose. 

https://www.simplilearn.com/tutorials/deep-learning-tutorial/neural-network


 

In CNN, every image is represented in the form of an array of pixel values. 

 

The convolution operation forms the basis of any convolutional neural network. Let’s understand 

the convolution operation using two matrices, a and b, of 1 dimension. 

a = [5,3,7,5,9,7] 

b = [1,2,3] 

In convolution operation, the arrays are multiplied element-wise, and the product is summed to 

create a new array, which represents a*b. 

The first three elements of the matrix a are multiplied with the elements of matrix b. The product 

is summed to get the result. 



 

The next three elements from the matrix a are multiplied by the elements in matrix b, and the 

product is summed up. 

 

This process continues until the convolution operation is complete. 

How Does CNN Recognize Images? 

Consider the following images: 



 

The boxes that are colored represent a pixel value of 1, and 0 if not colored. 

When you press backslash (\), the below image gets processed. 

 

When you press forward-slash (/), the below image is processed: 



 

Here is another example to depict how CNN recognizes an image: 

 

As you can see from the above diagram, only those values are lit that have a value of 1. 



Layers in a Convolutional Neural Network 

A convolution neural network has multiple hidden layers that help in extracting information from 

an image. The four important layers in CNN are: 

1. Convolution layer 
2. ReLU layer 
3. Pooling layer 
4. Fully connected layer 

Convolution Layer 

This is the first step in the process of extracting valuable features from an image. A convolution 

layer has several filters that perform the convolution operation. Every image is considered as a 

matrix of pixel values. 

Consider the following 5x5 image whose pixel values are either 0 or 1. There’s also a filter 

matrix with a dimension of 3x3. Slide the filter matrix over the image and compute the dot 

product to get the convolved feature matrix. 



 

ReLU layer 

ReLU stands for the rectified linear unit. Once the feature maps are extracted, the next step is to 

move them to a ReLU layer.  

ReLU performs an element-wise operation and sets all the negative pixels to 0. It introduces non-

linearity to the network, and the generated output is a rectified feature map. Below is the graph 

of a ReLU function: 



 

The original image is scanned with multiple convolutions and ReLU layers for locating the 

features. 

 



 

Pooling Layer 

Pooling is a down-sampling operation that reduces the dimensionality of the feature map. The 

rectified feature map now goes through a pooling layer to generate a pooled feature map. 

 

The pooling layer uses various filters to identify different parts of the image like edges, corners, 

body, feathers, eyes, and beak. 



 

Here’s how the structure of the convolution neural network looks so far: 

 

The next step in the process is called flattening. Flattening is used to convert all the resultant 2-

Dimensional arrays from pooled feature maps into a single long continuous linear vector. 

 



The flattened matrix is fed as input to the fully connected layer to classify the image. 

 

 

 

Here’s how exactly CNN recognizes a bird: 



 The pixels from the image are fed to the convolutional layer that performs the convolution 
operation  

 It results in a convolved map  
 The convolved map is applied to a ReLU function to generate a rectified feature map  
 The image is processed with multiple convolutions and ReLU layers for locating the features  
 Different pooling layers with various filters are used to identify specific parts of the image  
 The pooled feature map is flattened and fed to a fully connected layer to get the final output 

 

Use case implementation using CNN 

 

What a convolutional neural network (CNN) does differently 

A convolutional neural network is a specific kind of neural network with multiple layers. It 

processes data that has a grid-like arrangement then extracts important features. One huge 

advantage of using CNNs is that you don't need to do a lot of pre-processing on images. 

 

 

     

 

 

 

 



 

 

A big difference between a CNN and a regular neural network is that CNNs use convolutions to 

handle the math behind the scenes. A convolution is used instead of matrix multiplication in at 

least one layer of the CNN. Convolutions take to two functions and return a function. 

CNNs work by applying filters to your input data. What makes them so special is that CNNs are 

able to tune the filters as training happens. That way the results are fine-tuned in real time, even 

when you have huge data sets, like with images. 

Since the filters can be updated to train the CNN better, this removes the need for hand-created 

filters. That gives us more flexibility in the number of filters we can apply to a data set and the 

relevance of those filters. Using this algorithm, we can work on more sophisticated problems like 

face recognition. 

How Convolutional Neural Networks Work 

Convolutional neural networks are based on neuroscience findings. They are made of layers of 

artificial neurons called nodes. These nodes are functions that calculate the weighted sum of the 

inputs and return an activation map. This is the convolution part of the neural network. 

Each node in a layer is defined by its weight values. When you give a layer some data, like an 

image, it takes the pixel values and picks out some of the visual features. 

When you're working with data in a CNN, each layer returns activation maps. These maps point 

out important features in the data set. If you gave the CNN an image, it'll point out features based 

on pixel values, like colors, and give you an activation function. 

Usually with images, a CNN will initially find the edges of the picture. Then this slight definition 

of the image will get passed to the next layer. Then that layer will start detecting things like 

corners and color groups. Then that image definition will get passed to the next layer and the 

cycle continues until a prediction is made. 

As the layers get more defined, this is called max pooling. It only returns the most relevant 

features from the layer in the activation map. This is what gets passed to each successive layer 

until you get the final layer. 



 

The last layer of a CNN is the classification layer which determines the predicted value based on 

the activation map. If you pass a handwriting sample to a CNN, the classification layer will tell 

you what letter is in the image. This is what autonomous vehicles use to determine whether an 

object is another car, a person, or some other obstacle. 

Training a CNN is similar to training many other machine learning algorithms. You'll start with 

some training data that is separate from your test data and you'll tune your weights based on the 

accuracy of the predicted values. Just be careful that you don't overfit your model. 

Different types of CNNs 

There are multiple kinds of CNNs you can use depending on your problem. 

1D CNN: With these, the CNN kernel moves in one direction. 1D CNNs are usually used on 

time-series data. 

2D CNN: These kinds of CNN kernels move in two directions. You'll see these used with image 

labelling and processing. 

3D CNN: This kind of CNN has a kernel that moves in three directions. With this type of CNN, 

researchers use them on 3D images like CT scans and MRIs. 

In most cases, you'll see 2D CNNs because those are commonly associated with image data. 

Here are some of the applications that you might see CNNs used for. 



 Recognize images with little preprocessing 
 Recognize different hand-writing 
 Computer vision applications 
 Used in banking to read digits on checks 
 Used in postal services to read zip codes on an envelope 

Architecture of CNN 

A typical CNN has the following 4 layers (O’Shea and Nash 2015) 

1. Input layer 
2. Convolution layer 
3. Pooling layer 
4. Fully connected layer 

Please note that we will explain a 2 dimensional (2D) CNN here. But the same concepts apply to 

a 1 (or 3) dimensional CNN as well. 

Input layer 

The input layer represents the input to the CNN. An example input, could be a 28 pixel by 28 

pixel grayscale image. Unlike FNN, we do not “flatten” the input to a 1D vector, and the input is 

presented to the network in 2D as a 28 x 28 matrix. This makes capturing spatial relationships 

easier. 

Convolution layer 

The convolution layer is composed of multiple filters (also called kernels). Filters for a 2D image 

are also 2D. Suppose we have a 28 pixel by 28 pixel grayscale image. Each pixel is represented 

by a number between 0 and 255, where 0 represents the color black, 255 represents the color 

white, and the values in between represent different shades of gray. Suppose we have a 3 by 3 

filter (9 values in total), and the values are randomly set to 0 or 1. Convolution is the process of 

placing the 3 by 3 filter on the top left corner of the image, multiplying filter values by the pixel 

values and adding the results, moving the filter to the right one pixel at a time and repeating this 

process. When we get to the top right corner of the image, we simply move the filter down one 

pixel and restart from the left. This process ends when we get to the bottom right corner of the 

image. 

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#OSheaEtAl


Figure 2: A 3 by 3 filter applied to a 4 by 4 image, resulting in a 

2 by 2 image (Dumoulin and Visin 2016)  

Covolution operator has the following parameters: 

1. Filter size 
2. Padding 
3. Stride 
4. Dilation 
5. Activation function 

Filter size can be 5 by 5, 3 by 3, and so on. Larger filter sizes should be avoided as the learning 

algorithm needs to learn filter values (weights), and larger filters increase the number of weights 

to be learned (more compute capacity, more training time, more chance of overfitting). Also, odd 

sized filters are preferred to even sized filters, due to the nice geometric property of all the input 

pixels being around the output pixel. 

If you look at Figure 2 you see that after applying a 3 by 3 filter to a 4 by 4 image, we end up 

with a 2 by 2 image – the size of the image has gone down. If we want to keep the resultant 

image size the same, we can use padding. We pad the input in every direction with 0’s before 

applying the filter. If the padding is 1 by 1, then we add 1 zero in evey direction. If its 2 by 2, 

then we add 2 zeros in every direction, and so on. 

 

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin


Figure 3: A 3 by 3 filter applied to a 5 

by 5 image, with padding of 1, resulting in a 5 by 5 image (Dumoulin and Visin 2016)  

As mentioned before, we start the convolution by placing the filter on the top left corner of the 

image, and after multiplying filter and image values (and adding them), we move the filter to the 

right and repeat the process. How many pixels we move to the right (or down) is the stride. In 

figure 2 and 3, the stride of the filter is 1. We move the filter one pixel to the right (or down). But 

we could use a different stride. Figure 4 shows an example of using stride of 2. 

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin


Figure 4: A 3 by 3 filter applied to a 5 by 5 image, with 

stride of 2, resulting in a 2 by 2 image (Dumoulin and Visin 2016)  

When we apply a, say 3 by 3, filter to an image, our filter’s output is affected by pixels in a 3 by 

3 subset of the image. If we like to have a larger receptive field (portion of the image that affect 

our filter’s output), we could use dilation. If we set the dilation to 2 (Figure 5), instead of a 

contiguous 3 by 3 subset of the image, every other pixel of a 5 by 5 subset of the image affects 

the filter’s output. 

Figure 5: A 3 by 3 filter applied to a 7 

by 7 image, with dilation of 2, resulting in a 3 by 3 image (Dumoulin and Visin 2016)  

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin
https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin


After the filter scans the whole image, we apply an activation function to filter output to 

introduce non-linearlity. The preferred activation function used in CNN is ReLU or one its 

variants like Leaky ReLU (Nwankpa et al. 2018). ReLU leaves pixels with positive values in 

filter output as is, and replacing negative values with 0 (or a small number in case of Leaky 

ReLU). Figure 6 shows the results of applying ReLU activation function to a filter output. 

Figure 6: Applying ReLU activation 

function to filter output  

Given the input size, filter size, padding, stride and dilation you can calculate the output size of 

the convolution operation as below. 

(input size−(filter size + (filter size -1)*(dilation - 1)))+(2∗padding)stride+1 

Figure 7: 

Illustration of single input channel two dimensional convolution  

Figure 7 illustrates the calculations for a convolution operation, via a 3 by 3 filter on a single 

channel 5 by 5 input vector (5 x 5 x 1). Figure 8 illustrates the calculations when the input vector 

has 3 channels (5 x 5 x 3). To show this in 2 dimensions, we are displaying each channel in input 

vector and filter separately. Figure 9 shows a sample multi-channel 2D convolution in 3 

dimensions. 

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#NwankpaEtAl


Figure 8: Illustration of multiple input channel two dimensional convolution  

As Figures 8 and 9 show the output of a multi-channel 2 dimensional filter is a single channel 2 

dimensional image. Applying multiple filters to the input image results in a multi-channel 2 

dimensional image for the output. For example, if the input image is 28 by 28 by 3 (rows x 

columns x channels), and we apply a 3 by 3 filter with 1 by 1 padding, we would get a 28 by 28 

by 1 image. If we apply 15 filters to the input image, our output would be 28 by 28 by 15. Hence, 

the number of filters in a convolution layer allows us to increase or decrease the channel size. 

Pooling layer 

The pooling layer performs down sampling to reduce the spatial dimensionality of the input. This 

decreases the number of parameters, which in turn reduces the learning time and computation, 

and the likelihood of overfitting. The most popular type of pooling is max pooling. Its usually a 2 



by 2 filter with a stride of 2 that returns the maximum value as it slides over the input data 

(similar to convolution filters). 

Fully connected layer 

The last layer in a CNN is a fully connected layer. We connect all the nodes from the previous 

layer to this fully connected layer, which is responsible for classification of the image. 

Deep Learning  

Deep learning is based on the branch of machine learning, which is a subset of artificial 

intelligence. Since neural networks imitate the human brain and so deep learning will do. In deep 

learning, nothing is programmed explicitly. Basically, it is a machine learning class that makes 

use of numerous nonlinear processing units so as to perform feature extraction as well as 

transformation. The output from each preceding layer is taken as input by each one of the 

successive layers. 

Deep learning models are capable enough to focus on the accurate features themselves by 

requiring a little guidance from the programmer and are very helpful in solving out the problem 

of dimensionality. Deep learning algorithms are used, especially when we have a huge no of 

inputs and outputs. 

Since deep learning has been evolved by the machine learning, which itself is a subset of 

artificial intelligence and as the idea behind the artificial intelligence is to mimic the human 

behavior, so same is "the idea of deep learning to build such algorithm that can mimic the brain". 

Deep learning is implemented with the help of Neural Networks, and the idea behind the 

motivation of Neural Network is the biological neurons, which is nothing but a brain cell. 

“Deep learning is a collection of statistical techniques of machine learning for learning feature 

hierarchies that are actually based on artificial neural networks.” 

https://www.javatpoint.com/deep-learning-algorithms
https://www.javatpoint.com/machine-learning
https://www.javatpoint.com/artificial-intelligence-tutorial
https://www.javatpoint.com/artificial-neural-network


Example of Deep Learning 

 

In the example given above, we provide the raw data of images to the first layer of the input layer. After 

then, these input layer will determine the patterns of local contrast that means it will differentiate on 

the basis of colors, luminosity, etc. Then the 1st hidden layer will determine the face feature, i.e., it will 

fixate on eyes, nose, and lips, etc. And then, it will fixate those face features on the correct face 

template. So, in the 2nd hidden layer, it will actually determine the correct face here as it can be seen in 

the above image, after which it will be sent to the output layer. Likewise, more hidden layers can be 

added to solve more complex problems, for example, if you want to find out a particular kind of face 

having large or light complexions. So, as and when the hidden layers increase, we are able to solve 

complex problems. 

Architectures 

 Deep Neural Networks 
It is a neural network that incorporates the complexity of a certain level, which means several 
numbers of hidden layers are encompassed in between the input and output layers. They are 
highly proficient on model and process non-linear associations. 

 Deep Belief Networks 
A deep belief network is a class of Deep Neural Network that comprises of multi-layer belief 
networks. 
Steps to perform DBN:  

1. With the help of the Contrastive Divergence algorithm, a layer of features is learned 
from perceptible units. 

2. Next, the formerly trained features are treated as visible units, which perform learning 
of features. 

3. Lastly, when the learning of the final hidden layer is accomplished, then the whole DBN 
is trained. 



 Recurrent Neural Networks 
It permits parallel as well as sequential computation, and it is exactly similar to that of the 
human brain (large feedback network of connected neurons). Since they are capable enough to 
reminisce all of the imperative things related to the input they have received, so they are more 
precise. 

Types of Deep Learning Networks 

1. Feed Forward Neural Network 

A feed-forward neural network is none other than an Artificial Neural Network, which ensures 

that the nodes do not form a cycle. In this kind of neural network, all the perceptrons are 

organized within layers, such that the input layer takes the input, and the output layer generates 

the output. Since the hidden layers do not link with the outside world, it is named as hidden 

layers. Each of the perceptrons contained in one single layer is associated with each node in the 

subsequent layer. It can be concluded that all of the nodes are fully connected. It does not contain 

any visible or invisible connection between the nodes in the same layer. There are no back-loops 

in the feed-forward network. To minimize the prediction error, the backpropagation algorithm 

can be used to update the weight values. 

Applications: 

 Data Compression 

 Pattern Recognition 

 Computer Vision 

 Sonar Target Recognition 

 Speech Recognition 

 Handwritten Characters Recognition 

2. Recurrent Neural Network 

Recurrent neural networks are yet another variation of feed-forward networks. Here each of the 

neurons present in the hidden layers receives an input with a specific delay in time. The 

Recurrent neural network mainly accesses the preceding info of existing iterations. For example, 

to guess the succeeding word in any sentence, one must have knowledge about the words that 

were previously used. It not only processes the inputs but also shares the length as well as 

weights crossways time. It does not let the size of the model to increase with the increase in the 

input size. However, the only problem with this recurrent neural network is that it has slow 

computational speed as well as it does not contemplate any future input for the current state. It 

has a problem with reminiscing prior information. 

Applications: 

 Machine Translation 
 Robot Control 
 Time Series Prediction 

https://www.javatpoint.com/keras-artificial-neural-networks
https://www.javatpoint.com/keras-recurrent-neural-networks


 Speech Recognition 
 Speech Synthesis 
 Time Series Anomaly Detection 
 Rhythm Learning 
 Music Composition 

3. Convolutional Neural Network 

Convolutional Neural Networks are a special kind of neural network mainly used for image 

classification, clustering of images and object recognition. DNNs enable unsupervised 

construction of hierarchical image representations. To achieve the best accuracy, deep 

convolutional neural networks are preferred more than any other neural network. 

Applications: 

 Identify Faces, Street Signs, Tumors. 
 Image Recognition. 
 Video Analysis. 
 NLP. 
 Anomaly Detection. 
 Drug Discovery. 
 Checkers Game. 
 Time Series Forecasting. 

4. Restricted Boltzmann Machine 

RBMs are yet another variant of Boltzmann Machines. Here the neurons present in the input 

layer and the hidden layer encompasses symmetric connections amid them. However, there is no 

internal association within the respective layer. But in contrast to RBM, Boltzmann machines do 

encompass internal connections inside the hidden layer. These restrictions in BMs helps the 

model to train efficiently. 

Applications: 

 Filtering. 
 Feature Learning. 
 Classification. 
 Risk Detection. 
 Business and Economic analysis. 

5. Autoencoders 

An autoencoder neural network is another kind of unsupervised machine learning algorithm. 

Here the number of hidden cells is merely small than that of the input cells. But the number of 

input cells is equivalent to the number of output cells. An autoencoder network is trained to 

display the output similar to the fed input to force AEs to find common patterns and generalize 

the data. The autoencoders are mainly used for the smaller representation of the input. It helps in 

https://www.javatpoint.com/keras-convolutional-neural-network
https://www.javatpoint.com/keras-restricted-boltzmann-machine


the reconstruction of the original data from compressed data. This algorithm is comparatively 

simple as it only necessitates the output identical to the input. 

 Encoder: Convert input data in lower dimensions. 
 Decoder: Reconstruct the compressed data. 

Applications: 

 Classification. 
 Clustering. 
 Feature Compression. 

Deep learning applications 

 Self-Driving Cars 
In self-driven cars, it is able to capture the images around it by processing a huge amount of 
data, and then it will decide which actions should be incorporated to take a left or right or 
should it stop. So, accordingly, it will decide what actions it should take, which will further 
reduce the accidents that happen every year. 

 Voice Controlled Assistance 
When we talk about voice control assistance, then Siri is the one thing that comes into our 
mind. So, you can tell Siri whatever you want it to do it for you, and it will search it for you and 
display it for you. 

 Automatic Image Caption Generation 
Whatever image that you upload, the algorithm will work in such a way that it will generate 
caption accordingly. If you say blue colored eye, it will display a blue-colored eye with a caption 
at the bottom of the image. 

 Automatic Machine Translation 
With the help of automatic machine translation, we are able to convert one language into 
another with the help of deep learning. 

Limitations 

 It only learns through the observations. 
 It comprises of biases issues. 

Advantages 

 It lessens the need for feature engineering. 
 It eradicates all those costs that are needless. 
 It easily identifies difficult defects. 
 It results in the best-in-class performance on problems. 

Disadvantages 

 It requires an ample amount of data. 



 It is quite expensive to train. 
 It does not have strong theoretical groundwork. 
  

Extreme Learning Machine 

 
The learning pace of the feed-forward neural networks is considered as much slower than required. Due 

to this limitation, it has been a major barrier in many applications for decades. One of the major reasons 

is that sluggish gradient-based learning algorithms are widely employed to train neural networks which 

iteratively tune all of the network’s parameters and makes the learning process slower. Unlike standard 

learning approaches, there is a learning technique for Single-Hidden Layer Feed-Forward Neural 

Networks (SLFNs) that is called Extreme Learning Machine (ELM). The ELMs are believed to have the 

ability to learn thousands of times faster than networks trained using the backpropagation technique. In 

this article, we will discuss ELM in detail. The major points that we will cover in this article are listed 

below.   

Table of Contents 

1. The Feed-Forward Neural Network 
2. Extreme Learning Machine (ELM) 
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Let’s proceed with understanding Feed-Forward NN. 

The Feed-Forward Neural Network 

The feedforward neural network was the earliest and most basic type of artificial neural network 

to be developed. In this network, information flows only in one direction forward from the input 

nodes to the output nodes, passing via any hidden nodes. The network is devoid of cycles or 

loops. 

A single-layer perceptron network is the simplest type of FeedForward neural network, 

consisting of a single layer of output nodes with the inputs fed straight to the outputs via a 

sequence of weights. Each node calculates the total of the weights and inputs, and if the value is 

greater than a threshold (usually 0), the neuron fires and takes the active value (commonly 1); 

otherwise, it takes the deactivated value (typically 0 or -1). Artificial neurons or linear threshold 

units are neurons with this type of activation function. The term perceptron is frequently used in 

the literature to refer to networks that contain only one of these components. 

https://analyticsindiamag.com/guide-to-feed-forward-network-using-pytorch-with-mnist-dataset/
https://analyticsindiamag.com/ann-with-linear-regression/


Extreme Learning Machine (ELM) 

Extreme learning machines are feed-forward neural networks having a single layer or multiple 

layers of hidden nodes for classification, regression, clustering, sparse approximation, 

compression, and feature learning, where the hidden node parameters do not need to be 

modified. These hidden nodes might be assigned at random and never updated, or they can be 

inherited from their predecessors and never modified. In most cases, the weights of hidden nodes 

are usually learned in a single step which essentially results in a fast learning scheme.   

These models, according to their inventors, are capable of producing good generalization 

performance and learning thousands of times quicker than backpropagation networks. These 

models can also outperform support vector machines in classification and regression 

applications, according to the research.  

Fundamentals of ELM   

An ELM is a quick way to train SLFN networks (shown in the below figure). An SLFN 

comprises three layers of neurons, however, the name Single refers to the model’s one layer of 

non-linear neurons which is the hidden layer. The input layer offers data features but does not do 

any computations, whereas the output layer is linear with no transformation function and no bias. 

Source 

https://ieeexplore.ieee.org/document/7140733


The ELM technique sets input layer weights W and biases b at random and never adjusts them. 

Because the input weights are fixed, the output weights ???? are independent of them (unlike in 

the Backpropagation training method) and have a straightforward solution that does not require 

iteration. Such a solution is also linear and very fast to compute for a linear output layer. 

Random input layer weights improve the generalization qualities of a linear output layer solution 

because they provide virtually orthogonal (weakly correlated) hidden layer features. A linear 

system’s solution is always in a range of inputs. If the solution weight range is constrained, 

orthogonal inputs provide a bigger solution space volume with these constrained weights. 

Smaller weight norms tend to make the system more stable and noise resistant since input errors 

are not aggravating in the output of the linear system with smaller coefficients. As a result, the 

random hidden layer creates weakly correlated hidden layer features, allowing for a solution with 

a low norm and strong generalization performance. 

Variants of ELM 

In this section, we will summarize several variants of ELM and will introduce them briefly.  

ELM for Online Learning 

There are numerous types of data in real-world applications, thus ELM must be changed to 

effectively learn from these data. For example, because the dataset is increasing, we may not 

always be able to access the entire dataset. From time to time, new samples are added to the 

dataset. Every time the set grows, we must retrain the ELM.  

However, because the new samples frequently account for only a small portion of the total, re-

training the network using the entire dataset again is inefficient. Huang and Liang proposed an 

online sequential ELM to address this issue (OS-ELM).  The fundamental idea behind OS-ELM 

is to avoid re-training over old samples by employing a sequential approach. OS-ELM can 

update settings over new samples consecutively after startup. As a result, OS-ELM can be 

trained one at a time or block by block. 

Incremental ELM 

To build an incremental feedforward network, Huang et al. developed an incremental extreme 

learning machine (I-ELM). When a new hidden node was introduced, I-ELM randomly added 

nodes to the hidden layer one by one, freezing the output weights of the existing hidden nodes. I-

ELM is effective for SLFNs with piecewise continuous activation functions (including 

differentiable) as well as SLFNs with continuous activation functions ( such as threshold). 

Pruning ELM 

Rong et al. proposed a pruned-ELM (P-ELM) algorithm as a systematic and automated strategy 

for building ELM networks in light of the fact that using too few/many hidden nodes could lead 

to underfitting/overfitting concerns in pattern categorization. P-ELM started with a large number 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.5176&rep=rep1&type=pdf
https://pubmed.ncbi.nlm.nih.gov/16856652/
https://www.semanticscholar.org/paper/A-fast-pruned-extreme-learning-machine-for-problem-Rong-Ong/1a7423f3c3386ec9e73a2e51a11f2afc61753cb7


of hidden nodes and subsequently deleted the ones that were irrelevant or lowly relevant during 

learning by considering their relevance to the class labels.  

ELM’s architectural design can thus be automated as a result. When compared to the traditional 

ELM, simulation results indicated that the P-ELM resulted in compact network classifiers that 

generate fast response and robust prediction accuracy on unseen data. 

Error-Minimized ELM  

Feng et al. suggested an error-minimization-based method for ELM (EM-ELM) that can 

automatically identify the number of hidden nodes in generalized SLFNs by growing hidden 

nodes one by one or group by group. The output weights were changed incrementally as the 

networks grew, reducing the computational complexity dramatically. The simulation results on 

sigmoid type hidden nodes demonstrated that this strategy may greatly reduce the computational 

cost of ELM and offer an ELM implementation that is both efficient and effective. 

Evolutionary ELM 

When ELM is used, the number of hidden neurons is usually selected at random. Due to the 

random determination of input weights and hidden biases, ELM may require a greater number of 

hidden neurons. Zhu et al. introduced a novel learning algorithm called evolutionary extreme 

learning machine (E-ELM) for optimizing input weights and hidden biases and determining 

output weights.  

To improve the input weights and hidden biases in E-ELM, the modified differential 

evolutionary algorithm was utilized. The output weights were determined analytically using 

Moore– Penrose (MP) generalized inverse. 

Applications of ELM 

Extreme learning machine has been used in many application domains such as medicine, 

chemistry, transportation, economy, robotics, and so on due to its superiority in training speed, 

accuracy, and generalization. This section highlights some of the most common ELM 

applications. 

IoT Application 

As the Internet of Things (IoT) has gained more attention from academic and industry circles in 

recent years, a growing number of scientists have developed a variety of IoT approaches or 

applications based on modern information technologies.  

Using ELM in IoT applications can be done in a variety of ways. Rathore and Park developed an 

ELM-based strategy for detecting cyber-attacks. To identify assaults from ordinary visits, they 

devised a fog computing-based attack detection system and used an updated ELM as a classifier. 

https://pubmed.ncbi.nlm.nih.gov/19596632/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.3643&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S1568494618303508?via%3Dihub


Transportation Application  

The application of machine learning in transportation is a popular issue. Scientists, for example, 

used machine learning techniques to create a driver sleepiness monitoring system to prevent 

unsafe driving and save lives. It’s been a long time since an extreme learning machine was used 

to solve transportation-related challenges. Sun and Ng suggested a two-stage approach to 

transportation system optimization that integrated linear programming and extreme learning 

machines. Two trials showed that combining their approaches might extend the life of a 

transportation system while also increasing its reliability. 

Convolutional Networks 
Convolutional networks convolutional (LeCun, 1989), also known as neural networks or 
CNNs, are a specialized kind of neural network for processing data that has a known, grid-
like topology. Examples include time-series data, which can be thought of as a 1D grid 
taking samples at regular time intervals, and image data,which can be thought of as a 2D 
grid of pixels. Convolutional 
 
Convolution is a specialized kind of linear operation. Convolutional networks are simply 
neural networks that use convolution in place of general matrix multiplication in at 
least one of their layers. 
 
The Convolution Operation 
convolution is an operation on two functions of a realvalued argument. To motivate the 
definition of convolution, we start with examples of two functions we might use. 
 
Suppose we are tracking the location of a spaceship with a laser sensor. Our 
laser sensor provides a single output x(t), the position of the spaceship at time 
t. Both x and t are real-valued, i.e., we can get a different reading from the laser sensor at 
any instant in time. 
Now suppose that our laser sensor is somewhat noisy. To obtain a less noisy estimate of 
the spaceship’s position, we would like to average together several measurements. Of 
course, more recent measurements are more relevant, so we will want this to be a 
weighted average that gives more weight to recent measurements. We can do this with a 
weighting function w(a), where a is the age of a measurement.If we apply such a weighted 
average operation at every moment, we obtain a new function providing a smoothed 
estimate of the position s of the spaceship: 
 

 
This operation is called convolution. The convolution operation is typically 
denoted with an asterisk: 
 

https://ieeexplore.ieee.org/document/5954183


 
In our example, w needs to be a valid probability density function, or the output is not a 
weighted average. Also, w needs to be 0 for all negative arguments, or it will look into the 
future, which is presumably beyond our capabilities. 
 
In convolutional network terminology, the first argument (in this example, the function x) 
to the convolution is often referred to as the input and the second argument (in this 
example, the function w) as the kernel. The output is sometimes referred to as the feature 
map. 
 
In our example, it might be more realistic to assume that our laser provides a measurement 
once per second. The time index t can then take on only integer values. If we now assume 
that x and w are defined only on integer t, we can define the discrete convolution: 
 

 
In machine learning applications, the input is usually a multidimensional array 
of data and the kernel is usually a multidimensional array of parameters that are 
adapted by the learning algorithm. We will refer to these multidimensional arrays 
as tensors. 
Finally, we often use convolutions over more than one axis at a time. For 
example, if we use a two-dimensional image I as our input, we probably also want to use a 
two-dimensional kernel K: 
 

 
Convolution is commutative, meaning we can equivalently write: 

 
Usually the latter formula is more straightforward to implement in a machine learning 
library, because there is less variation in the range of valid values of m and n.The 
commutative property of convolution arises because we have flipped the kernel relative to 
the input, in the sense that as m increases, the index into the input increases, but the index 
into the kernel decreases. The only reason to flip the kernel is to obtain the commutative 
property. 
 
 
While the commutative property is useful for writing proofs, it is not usually an important 
property of a neural network implementation. Instead, many neural network libraries 



implement a related function called the cross-correlation, which is the same as convolution 
but without flipping the kernel: 
 

 
Fig. 9.1 for an example of convolution (without kernel flipping) applied to a 2-D 
tensor.Discrete convolution can be viewed as multiplication by a matrix. However, the 
matrix has several entries constrained to be equal to other entries. For example, for 
univariate discrete convolution, each row of the matrix is constrained to be equal to the 
row above shifted by one element. This is known as a Toeplitz matrix. 
In two dimensions, a doubly block circulant matrix corresponds to convolution. In addition 
to these constraints that several elements be equal to each other, convolution usually 
corresponds to a very sparse matrix (a matrix whose entries are mostly equal to zero). This 
is because the kernel is usually much smaller than the input image. Any neural network 
algorithm that works with matrix multiplication and does not depend on specific 
properties of the matrix structure should work with convolution, without requiring any 
further changes to the neural network.Typical convolutional neural networks do make use 
of further specializations in order to deal with large inputs efficiently, but these are not 
strictly necessary from a theoretical perspective. 
 



 
Motivation 
Convolution leverages three important ideas that can help improve a machine learning 
system: sparse interactions parameter sharing equivariant , and representations. Moreover, 
convolution provides a means for working with inputs of variable 
size. We now describe each of these ideas in turn. 
Traditional neural network layers use matrix multiplication by a matrix of 
parameters with a separate parameter describing the interaction between each 
input unit and each output unit. This means every output unit interacts with every input 
unit. Convolutional networks, however, typically have sparse interactions (also referred to 
as sparse connectivity or sparse weights). This is accomplished by making the kernel smaller 
than the input. For example, when processing an image, the input image might have 
thousands or millions of pixels, but we can detect small, meaningful features such as edges 
with kernels that occupy only tens or hundreds of pixels. This means that we need to store 
fewer parameters, which both reduces the memory requirements of the model and 
improves its statistical efficiency. It also means that computing the output requires fewer 
operations. These improvements in efficiency are usually quite large. If there are m inputs 
and n outputs, then matrix multiplication requiresm×n parameters and the algorithms used 
in practice have O(m × n) runtime (per example). If we limit the number of connections 



each output may have to k, then the sparsely connected approach requires only k × n 
parameters and O(k × n) runtime. 

 



 



 
 
Parameter sharing refers to using the same parameter for more than one function in a 
model. In a traditional neural net, each element of the weight matrix is used exactly once 
when computing the output of a layer. It is multiplied by one element of the input and then 
never revisited. As a synonym for parameter sharing, one can say that a network has tied 
weights, because the value of the weight applied to one input is tied to the value of a weight 
applied elsewhere. In a convolutional neural net, each member of the kernel is used at 
every position of the input (except perhaps some of the boundary pixels, depending on the 
design decisions regarding the boundary). The parameter sharing used by the convolution 
operation means that rather than learning a separate set of parameters for every location, 
we learn 
 



 
only one set. This does not affect the runtime of forward propagation—it is still O(k × n)—
but it does further reduce the storage requirements of the model to k parameters. Recall 
that k is usually several orders of magnitude less than m. Since m and n are usually roughly 
the same size, k is practically insignificant compared to m× n. 
 
In the case of convolution, the particular form of parameter sharing causes the layer to 
have a property called equivariance to translation. To say a function is equivariant means 
that if the input changes, the output changes in the same way. Specifically, a function f(x) is 
equivariant to a function g if f (g(x)) = g(f(x)). In the case of convolution, if we let g be any 
function that translates the input, i.e., shifts it, then the convolution function is equivariant 
to g. For example, let I be a function giving image brightness at integer coordinates. Let g be 
a function mapping one image function to another image function, such that I  = g(I ) is 
the image function with I (x, y) = I(x − 1, y). This shifts every pixel of I one unit to the right. 
If we apply this transformation to I , then apply convolution, the result will be the same as if 
we applied convolution to I , then applied the transformation g to the output. 
 
Pooling 
A typical layer of a convolutional network consists of three stages (see Fig. 9.7). In the first 
stage, the layer performs several convolutions in parallel to produce a set of linear 
activations. In the second stage, each linear activation is run through a nonlinear activation 
function, such as the rectified linear activation function. This stage is sometimes called the 
detector stage. In the third stage, we use a pooling function to modify the output of the layer 
further. 



A pooling function replaces the output of the net at a certain location with a summary 
statistic of the nearby outputs. For example, the max pooling (Zhou and Chellappa, 1988) 
operation reports the maximum output within a rectangular 
 

 



 
based on the distance from the central pixel. In all cases, pooling helps to make the 
representation become approximately invariant to small translations of the input. 
Invariance to translation means that if we translate the input by a small amount, the values 
of most of the pooled outputs do not change. See Fig. for an example 9.8 of how this works. 
Invariance to local translation can be a very useful property if we care more about 
whether some feature is present than exactly where it is.  
For example, when determining whether an image contains a face, we need not know the 
location of the eyes with pixel-perfect accuracy, we just need to know that there is an eye 
on the left side of the face and an eye on the right side of the face. In other contexts, it is 
more important to preserve the location of a feature. For example, if we want to find a 
corner defined by two edges meeting at a specific orientation, we need to preserve the 
location of the edges well enough to test whether they meet. 
 



 
Pooling over spatial regions produces invariance to translation, but if we pool over the 
outputs of separately parametrized convolutions, the features can learn which 
transformations to become invariant to (see Fig. 9.9). Because pooling summarizes the 
responses over a whole neighborhood, it is possible to use fewer pooling units than 
detector units, by reporting summary statistics for pooling regions spaced k pixels apart 
rather than 1 pixel apart. See Fig. 9.10 for an example. This improves the computational 
efficiency of the network because the next layer has roughly k times fewer inputs to 
process. When the number of parameters in the next layer is a function of its input size 
(such as when the next layer is fully connected and based on matrix multiplication) this 
reduction in the input size can also result in improved statistical efficiency and reduced 
memory requirements for storing the parameters. 
For many tasks, pooling is essential for handling inputs of varying size. For example, if we 
want to classify images of variable size, the input to the classification layer must have a 
fixed size. This is usually accomplished by varying the size of an offset between pooling 
regions so that the classification layer always receives the same number of summary 
statistics regardless of the input size. For example, the final pooling layer of the network 



may be defined to output four sets of summary statistics, one for each quadrant of an 
image, regardless of the image size. 

 

 
Pooling can complicate some kinds of neural network architectures that use 
top-down information, such as Boltzmann machines and autoencoders. 



 Some examples of complete convolutional network architectures for classification 
using convolution and pooling are shown in Fig. 9.11. 

 
 



 
 
Variants of the Basic Convolution Function 
When discussing convolution in the context of neural networks, we usually do not refer 
exactly to the standard discrete convolution operation as it is usually understood in the 
mathematical literature. The functions used in practice differ slightly. Here we describe 
these differences in detail, and highlight some useful properties of the functions used in 
neural networks. First, when we refer to convolution in the context of neural networks, we 
usually actually mean an operation that consists of many applications of convolution in 
parallel. This is because convolution with a single kernel can only extract one kind of 
feature, albeit at many spatial locations. Usually we want each layer of our network to 
extract many kinds of features, at many locations. 
 
Additionally, the input is usually not just a grid of real values. Rather, it is a grid of vector-
valued observations. For example, a color image has a red, green and blue intensity at each 
pixel. In a multilayer convolutional network, the input to the second layer is the output of 
the first layer, which usually has the output of many different convolutions at each position. 
When working with images, we usually think of the input and output of the convolution as 
being 3-D tensors, with one index into the different channels and two indices into the 
spatial coordinates of each channel. Software implementations usually work in batch mode, 
so they will actually use 4-D tensors, with the fourth axis indexing different examples in 
the batch, but we will omit the batch axis in our description here for simplicity. Because 
convolutional networks usually use multi-channel convolution, the linear operations they 
are based on are not guaranteed to be commutative, even if kernel-flipping is used. These 
multi-channel operations are only commutative if each operation has the same number of 
output channels as input channels. 
Assume we have a 4-D kernel tensor K with element Ki,j,k,l giving the connection strength 
between a unit in channel i of the output and a unit in channel j of the input, with an offset 
of k rows and l columns between the output unit and the 
input unit. Assume our input consists of observed data V with element Vi,j,k giving the 
value of the input unit within channel i at row j and column k. Assume our output consists 
of Z with the same format as V. If Z is produced by convolving K across V without flipping 
K, then 
 

 
where the summation over l , m and n is over all values for which the tensor indexing 
operations inside the summation is valid. In linear algebra notation, we index into arrays 
using a 1 for the first entry. This necessitates the −1 in the above formula. Programming 
languages such as C and Python index starting from 0, rendering the above expression even 
simpler. 
We may want to skip over some positions of the kernel in order to reduce the 
computational cost (at the expense of not extracting our features as finely). We 



can think of this as downsampling the output of the full convolution function. If we want to 
sample only every s pixels in each direction in the output, then we can define a 
downsampled convolution function c such that 
 

 
We refer to s as the stride of this downsampled convolution. It is also possible to define a 
separate stride for each direction of motion. See Fig. 9.12 for an illustration. 
 

 
 
One essential feature of any convolutional network implementation is the ability to 
implicitly zero-pad the input V in order to make it wider. Without this feature, the width of 
the representation shrinks by one pixel less than the kernel width at each layer. Zero 
padding the input allows us to control the kernel width and the size of the output 
independently. Without zero padding, we are forced to 



choose between shrinking the spatial extent of the network rapidly and using small 
kernels—both scenarios that significantly limit the expressive power of the network. 

 
Three special cases of the zero-padding setting are worth mentioning. One is the 

extreme case in which no zero-padding is used whatsoever, and the convolution kernel is 
only allowed to visit positions where the entire kernel is contained entirely within the 
image. In MATLAB terminology, this is called valid convolution. In this case, all pixels in the 
output are a function of the same number of pixels in the input, so the behavior of an 
output pixel is somewhat more regular. However, the size of the output shrinks at each 
layer. If the input image has width m and the kernel has width k, the output will be of width 
m− k+ 1. The rate of this shrinkage can be dramatic if the kernels used are large. Since the 
shrinkage is greater than 0, it limits the number of convolutional layers that can be 
included in the network. As layers are added, the spatial dimension of the network will 
eventually drop to 1 × 1, at which point additional layers cannot meaningfully be 
considered convolutional. Another special case of the zero-padding setting is when just 
enough zero-padding is added to keep the size of the output equal to the size of the input. 
MATLAB calls this same convolution. In this case, the network can contain as many 
convolutional layers as the available hardware can support, since the operation of 
convolution does not modify the architectural possibilities available to the next layer. 
However, the input pixels near the border influence fewer output pixels than the input 
pixels near the center. This can make the border pixels somewhat underrepresented in the 
model. This motivates the other extreme case, which MATLAB refers to as full convolution, 
in which enough zeroes are added for every pixel to be visited k times in each direction, 
resulting in an output image of width m+ k − 1. In this case, the output pixels near the 
border are a function of fewer pixels than the output pixels near the center. This can make 
it difficult to learn a single kernel that performs well at all positions in the convolutional 
feature map. Usually the optimal amount of zero padding (in terms of test set classification 
accuracy) lies somewhere between “valid” and “same”convolution. 

 
In some cases, we do not actually want to use convolution, but rather locally connected 
layers (LeCun, 1986, 1989). In this case, the adjacency matrix in the graph of our MLP is the 
same, but every connection has its own weight, specified 
 



 
by a 6-D tensor W. The indices into W are respectively: i, the output channel, j, the output 
row, k, the output column, l, the input channel, m, the row offset within the input, and n, the 
column offset within the input. The linear part of a locally connected layer is then given by 
 



 
This is sometimes also called unshared convolution, because it is a similar operation to 
discrete convolution with a small kernel, but without sharing parameters across locations. 
Fig. 9.14 compares local connections, convolution, and full connections. 

 
 
 



 



 
the output width, this is the same as a locally connected layer. 
 

 
where % is the modulo operation, with t%t = 0, (t + 1)%t = 1, etc. It is straightforward to 
generalize this equation to use a different tiling range for each dimension. Both locally 
connected layers and tiled convolutional layers have an interesting interaction with max-
pooling: the detector units of these layers are driven by different filters. If these filters learn 



to detect different transformed versions of the same underlying features, then the max-
pooled units become invariant to the learned transformation (see Fig. 9.9). Convolutional 
layers are hard-coded to be invariant specifically to translation. 
 
The matrix involved is a function of the convolution kernel. The matrix is sparse and each 
element of the kernel is copied to several elements of the matrix. This view helps us to 
derive some of the other operations needed to implement a convolutional network. 
Multiplication by the transpose of the matrix defined by convolution is one such operation. 
This is the operation needed to back-propagate error derivatives through a convolutional 
layer, so it is needed to train convolutional networks that have more than one hidden layer. 
This same operation is also needed if we wish to reconstruct the visible units from the 
hidden units (Simard et al., 1992). 
 
Reconstructing the visible units is an operation commonly used in the models described in 
Part III of this book, such as autoencoders, RBMs, and sparse coding. Transpose 
convolution is necessary to construct convolutional versions of those models. Like the 
kernel gradient operation, this input gradient operation can be implemented using a 
convolution in some cases, but in the general case requires a third operation to be 
implemented. Care must be taken to coordinate this transpose operation with the forward 
propagation. The size of the output that the transpose operation should return depends on 
the zero padding policy and stride of the forward propagation operation, as well as the size 
of the forward propagation’s output map. In some cases, multiple sizes of input to forward 
propagation can result in the same size of output map, so the transpose operation must be 
explicitly told what the size of the original input was. 
 

These three operations—convolution, backprop from output to weights, and 
backprop from output to inputs—are sufficient to compute all of the gradients needed to 
train any depth of feedforward convolutional network, as well as to train convolutional 
networks with reconstruction functions based on the transpose of convolution. See ( ) for a 
full derivation Goodfellow 2010 of the equations in the fully general multi-dimensional, 
multi-example case. To give a sense of how these equations work, we present the two 
dimensional, single example version here. 
 

Suppose we want to train a convolutional network that incorporates strided 
convolution of kernel stack K applied to multi-channel image V with stride s as defined by 
c(K,V, s) as in Eq. 9.8. Suppose we want to minimize some loss function J(V,K). During 
forward propagation, we will need to use c itself to output Z, which is then propagated 
through the rest of the network and used to compute the cost function J. During back-
propagation, we will receive a tensor G such that 
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Deep Learning – An Introduction 

• Deep learning is a method in artificial intelligence (AI) that teaches 
computers to process data in a way that is inspired by the human brain. 
Deep learning models can recognize complex patterns in pictures, text, 
sounds, and other data to produce accurate insights and predictions. 

• It has become increasingly popular in recent years due to the advances in 
processing power and the availability of large datasets. Because it is 
based on artificial neural networks (ANNs) also known as deep neural 
networks (DNNs).  

• These neural networks are inspired by the structure and function of the 
human brain’s biological neurons, and they are designed to learn from 
large amounts of data.  

• The key characteristic of Deep Learning is the use of deep neural 
networks, which have multiple layers of interconnected nodes. These 
networks can learn complex representations of data by discovering 
hierarchical patterns and features in the data.  

• Deep Learning algorithms can automatically learn and improve from data 
without the need for manual feature engineering. 

 
 
 
 
 
 
 
 
 
 
 
 



Difference between Machine Learning and Deep Learning: 
 

Machine Learning Deep Learning 

Apply statistical algorithms to learn 
the hidden patterns and 
relationships in the dataset. 

Uses artificial neural network 
architecture to learn the hidden 
patterns and relationships in the 
dataset. 

Can work on the smaller amount of 
dataset 

Requires the larger volume of 
dataset compared to machine 
learning 

Takes less time to train the model. Takes more time to train the model. 
A model is created by relevant 
features which are manually 
extracted from images to detect an 
object in the image. 

Relevant features are automatically 
extracted from images. It is an end-
to-end learning process. 

It can work on the CPU or requires 
less computing power as compared 
to deep learning. 

It requires a high-performance 
computer with GPU. 

 
 
History of Deep Learning 
Here is a brief history of some key developments in deep learning: 
The history of deep learning can be traced back to 1943, when Walter Pitts and 
Warren McCulloch created a computer model based on the neural networks of 
the human brain. 
They used a combination of algorithms and mathematics they called “threshold 
logic” to mimic the thought process. Since that time, Deep Learning has evolved 
steadily, with only two significant breaks in its development. Both were tied to 
the infamous Artificial Intelligence winters. 
The 1960s 
Henry J. Kelley is given credit for developing the basics of a continuous Back 
Propagation Modelin 1960. In 1962, a simpler version based only on the chain 
rule was developed by Stuart Dreyfus. While the concept of back propagation 
(the backward propagation of errors for purposes of training) did exist in the 
early 1960s, it was clumsy and inefficient, and would not become useful until 
1985. 
The earliest efforts in developing deep learning algorithms came from Alexey 
Grigoryevich Ivakhnenko (developed the Group Method of Data Handling) and 
Valentin Grigorʹevich Lapa (author of Cybernetics and Forecasting Techniques) 
in 1965. They used models with polynomial (complicated equations) activation 
functions, that were then analyzed statistically. From each layer, the best 
statistically chosen features were then forwarded on to the next layer (a slow, 
manual process). 
 
 
 
 



The 1970s 
During the 1970’s the first AI winter kicked in, the result of promises that 
couldn’t be kept. The impact of this lack of funding limited both DL and AI 
research. Fortunately, there were individuals who carried on the research 
without funding. 
The first “convolutional neural networks” were used by Kunihiko Fukushima. 
Fukushima designed neural networks with multiple pooling and convolutional 
layers. In 1979, he developed an artificial neural network, called Neocognitron, 
which used a hierarchical, multilayered design. This design allowed the 
computer the “learn” to recognize visual patterns. The networks resembled 
modern versions but were trained with a reinforcement strategy of recurring 
activation in multiple layers, which gained strength over time. Additionally, 
Fukushima’s design allowed important features to be adjusted manually by 
increasing the “weight” of certain connections. Many of the concepts of 
Neocognitron continue to be used. 
The use of top-down connections and new learning methods have allowed for a 
variety of neural networks to be realized. When more than one pattern is 
presented at the same time, the Selective Attention Model can separate and 
recognize individual patterns by shifting its attention from one to the other. 
(The same process many of us use when multitasking). A modern Neocognitron 
can not only identify patterns with missing information (for example, an 
incomplete number 5), but can also complete the image by adding the missing 
information. This could be described as “inference.” 
Back propagation, the use of errors in training deep learning models, evolved 
significantly in 1970. This was when Seppo Linnainmaa wrote his master’s 
thesis, including a FORTRAN code for back propagation. 
Unfortunately, the concept was not applied to neural networks until 1985. This 
was when Rumelhart, Williams, and Hinton demonstrated back propagation in 
a neural network could provide “interesting” distribution representations. 
Philosophically, this discovery brought to light the question within cognitive 
psychology of whether human understanding relies on symbolic logic 
(computationalism) or distributed representations (connectionism). 
 
The 1980s and 90s 
In 1989, Yann LeCun provided the first practical demonstration of 
backpropagation at Bell Labs. He combined convolutional neural networks with 
back propagation onto read “handwritten” digits. This system was eventually 
used to read the numbers of handwritten checks. 
This time is also when the second AI winter (1985-90s) kicked in, which also 
effected research for neural networks and deep learning. Various overly-
optimistic individuals had exaggerated the “immediate” potential of Artificial 
Intelligence, breaking expectations and angering investors. The anger was so 
intense, the phrase Artificial Intelligence reached pseudoscience status. 
Fortunately, some people continued to work on AI and DL, and some significant 
advances were made. In 1995, Dana Cortes and Vladimir Vapnik developed the 
support vector machine (a system for mapping and recognizing similar data). 



LSTM (long short-term memory) for recurrent neural networks was developed 
in 1997, by Sepp Hochreiter and Juergen Schmidhuber. 
The next significant evolutionary step for deep learning took place in 1999, 
when computers started becoming faster at processing data and GPU (graphics 
processing units) were developed. Faster processing, with GPUs processing 
pictures, increased computational speeds by 1000 times over a 10 year span. 
During this time, neural networks began to compete with support vector 
machines. While a neural network could be slow compared to a support vector 
machine, neural networks offered better results using the same data. Neural 
networks also have the advantage of continuing to improve as more training 
data is added. 
 
2000-2010 
Around the year 2000, The Vanishing Gradient Problem appeared. It was 
discovered “features” (lessons) formed in lower layers were not being learned 
by the upper layers, because no learning signal reached these layers. This was 
not a fundamental problem for all neural networks, just the ones with gradient-
based learning methods. The source of the problem turned out to be certain 
activation functions. A number of activation functions condensed their input, in 
turn reducing the output range in a somewhat chaotic fashion. This produced 
large areas of input mapped over an extremely small range. In these areas of 
input, a large change will be reduced to a small change in the output, resulting 
in a vanishing gradient. Two solutions used to solve this problem were layer-
by-layer pre-training and the development of long short-term memory. 
In 2001, a research report by META Group (now called Gartner) described he 
challenges and opportunities of data growth as three-dimensional. The report 
described the increasing volume of data and the increasing speed of data as 
increasing the range of data sources and types. This was a call to prepare for the 
onslaught of Big Data, which was just starting. 
In 2009, Fei-Fei Li, an AI professor at Stanford launched ImageNet, assembled a 
free database of more than 14 million labeled images. The Internet is, and was, 
full of unlabeled images. Labeled images were needed to “train” neural nets. 
Professor Li said, “Our vision was that big data would change the way machine 
learning works. Data drives learning.” 
 
2011-2020 
By 2011, the speed of GPUs had increased significantly, making it possible to 
train convolutional neural networks “without” the layer-by-layer pre-training. 
With the increased computing speed, it became obvious deep learning had 
significant advantages in terms of efficiency and speed. One example is AlexNet, 
a convolutional neural network whose architecture won several international 
competitions during 2011 and 2012. Rectified linear units were used to 
enhance the speed and dropout. 
 
 
 



Also in 2012, Google Brain released the results of an unusual project known as 
The Cat Experiment. The free-spirited project explored the difficulties of 
“unsupervised learning.” Deep learning uses “supervised learning,” meaning the 
convolutional neural net is trained using labeled data (think images from 
ImageNet). Using unsupervised learning, a convolutional neural net is given 
unlabeled data, and is then asked to seek out recurring patterns. 
The Cat Experiment used a neural net spread over 1,000 computers. Ten million 
“unlabeled” images were taken randomly from YouTube, shown to the system, 
and then the training software was allowed to run. At the end of the training, 
one neuron in the highest layer was found to respond strongly to the images of 
cats. Andrew Ng, the project’s founder said, “We also found a neuron that 
responded very strongly to human faces.” Unsupervised learning remains a 
significant goal in the field of deep learning. 
The Generative Adversarial Neural Network (GAN) was introduced in 2014. 
GAN was created by Ian Goodfellow. With GAN, two neural networks play 
against each other in a game. The goal of the game is for one network to imitate 
a photo, and trick its opponent into believing it is real. The opponent is, of 
course, looking for flaws. The game is played until the near perfect photo tricks 
the opponent. GAN provides a way to perfect a product (and has also begun 
being used by scammers). 
 
Probabilistic Theory of Deep Learning 
The Probabilistic Theory of Deep Learning (PTDL) is a framework aimed at 
understanding and explaining the behavior of deep neural networks (DNNs) 
through a probabilistic lens. It seeks to bridge the gap between traditional 
machine learning and deep learning by integrating probabilistic models with 
deep learning architectures.  
The probabilistic neural networks employs deep neural networks that utilize 
probabilistic layers which can represent and process uncertainty; the deep 
probabilistic models uses probabilistic models that incorporate deep neural 
network components which capture complex non-linear stochastic 
relationships between the random variables. 
The main advantages of probabilistic models are that these can capture the 
uncertainties in most real-world applications and provide essential information 
for decision making. 
Probabilistic deep learning aims to address this limitation by incorporating 
uncertainty estimation into deep learning models. This can be achieved through 
various approaches: 
 

• Bayesian Neural Networks (BNNs): BNNs treat model parameters as 
random variables with prior distributions. By inferring the posterior 
distribution of these parameters given the data, BNNs can provide not 
only point estimates but also uncertainty estimates for predictions. 

 
 
 
 



• Variational Inference: Variational inference is a technique used to 
approximate complex posterior distributions with simpler distributions. 
In the context of deep learning, variational inference can be used to 
approximate the posterior distribution of neural network weights, 
enabling uncertainty estimation. 
 

• Dropout as Bayesian Approximation: Dropout is a regularization 
technique commonly used in deep learning to prevent overfitting. 
Interestingly, dropout can also be interpreted as a form of approximate 
Bayesian inference, where dropout during training can be seen as 
sampling from a distribution over possible neural network architecture. 
This can be leveraged to estimate uncertainty in predictions. 
 

• Gaussian Processes (GPs): GPs are a powerful probabilistic modeling 
tool that can model distributions over functions. By combining GPs with 
deep neural networks, researchers have developed methods like Deep 
Gaussian Processes (DGPs), which provide uncertainty estimates while 
leveraging the representational power of deep learning architectures. 
 

 
• Monte Carlo Dropout: Monte Carlo Dropout extends dropout to the 

testing phase by performing multiple stochastic forward passes through 
the network with dropout turned on. This allows for the estimation of 
predictive uncertainty by observing the variance of predictions across 
these passes. 
 

• Ensemble Methods: Ensemble methods involve training multiple neural 
networks with different initializations or architectures and averaging 
their predictions. Ensemble methods naturally provide uncertainty 
estimates through the variance of predictions across the ensemble 
members. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Gradient Learning 
 
"Gradient learning" typically refers to the process of updating the 
parameters of a model, often a neural network, using gradient descent 
optimization algorithms. Gradient descent is a fundamental optimization 
technique used to minimize the loss function of a model by iteratively 
adjusting its parameters in the direction of steepest descent of the loss 
function. 
 
Gradient learning is essential for training neural networks and is the 
foundation of many deep learning algorithms.  
 
 
 
 
 
 
 

Deep Learning Framework 

• Neural Networks  

• Convolutional NNs 

• Recurrent NNs 

Incorporating 

Uncertainty 

Applications of Probabilistic Theory of Deep 

Learning 

• Medical Diagnosis 

• Autonomous Driving 

• Financial Modeling 

• Robotics 

• Natural Language Processing 

• Uncertainty Quantization 

 

 



Variants of gradient descent, such as  
 
1. Stochastic gradient descent (SGD) 
2. Mini-batch gradient descent 
3. Adaptive learning rate methods like Adam are commonly used in 
practice to improve convergence speed and stability during training. 
Neural networks are usually trained by using iterative, gradient-based 
optimizers. Gradient- based learning draws on the fact that it is generally 
much easier to minimize a reasonably smooth, continuous function than 
a discrete function. 

• The loss function can be minimized by estimating the impact of 
small variations of the parameter values on the loss function. 
Convex optimization converges starting from any initial 
parameters.  

• Stochastic gradient descent applied to non-convex loss functions 
has no such convergence guarantee and is sensitive to the values of 
the initial parameters. 

• For feedforward neural networks, it is important to initialize all 
weights to small random values. The biases may be initialized to 
zero or to small positive values. The iterative gradient-based 
optimization algorithms used to train feedforward networks and 
almost all other deep models. 

      
Cost Function 

An important aspect of the design of deep neural networks is the 
cost function. They are similar to those for parametric models such 
as linear models. In most cases, parametric model defines a 
distribution p(y|x; 0) and simply use the principle of maximum 
likelihood. 
The use of cross-entropy between the training data and the 
model's prediction’s function. Most modern neural networks are 
trained using maximum likelihood. 
Cost function is given by 
J(𝐽(𝜃) = ∑ 𝑥, 𝑦~𝑝𝑑𝑎𝑡𝑎 𝐿𝑜𝑔 𝑃𝑚𝑜𝑑𝑒𝑙 (𝑌|𝑋) 

 

 
 
 
 
 
 



The advantage of this approach to cost is that deriving cost from maximum 
likelihood removes the burden of designing cost functions for each model. 
 
Desirable property of gradient:  
 

• Gradient must be large and predictable enough to serve as a good guide 
to the learning algorithm. 
 

Cross entropy and regularization:  
 

• A property of cross-entropy cost used for MLE is that, it does not have a 
minimum value. For discrete output variables, they cannot represent 
probability of zero or one but come arbitrarily close. Logistic regression 
is an example. 

• For real-valued output variables it becomes possible to assign extremely 
high density to correct training set outputs, e.g, by learning the variance 
parameter of Gaussian output and the resulting cross-entropy 
approaches negative infinity. 
 

Learning conditional statistics:  
 

• Instead of learning a full probability distribution, we often want to learn 
just one conditional statistic of y given x. 
 

Learning a function:  
 

• If we have a sufficiently powerful neural network, we can think of it as 
being powerful enough to determine any function "f". This function is 
limited only by boundedness and continuity. 

• From this point of view, cost function is a function rather than a function. 
• View cost as a functional, not a function. We can think of learning as a task 

of choosing a function rather than a set of parameters. We can design our 
cost function to have its minimum occur at a specific function we desire. 
For example, design the cost functional to have its minimum lie on the 
function that maps x to the expected value of y given x. 
 

Chain Rule and Backpropagation 
 

• The chain rule and backpropagation are fundamental concepts in the 
training of neural networks, especially in the context of gradient-based 
optimization.  

• Backpropagation is a training method used for a multi-layer neural 
network. It is also called the generalized delta rule. It is a gradient descent 
method, which minimizes the total squared error of the output computed 
by the net. 

 
 



• The backpropagation algorithm looks for the minimum value of the error 
function in weight space using a technique called the delta rule or 
gradient descent. The weights that minimize the error function is then 
considered to be a solution to the learning problem. 

• Backpropagation is a systematic method for training multiple layer ANN. 
It is a generalization of Widrow-Hoff error correction rule. 80 % of ANN 
applications uses backpropagation.  

• The Figure given below shows backpropagation network. 
 
 

 
 
 
Here's an explanation of each: 
Consider a simple neuron: 

• Neuron has a summing junction and activation function. 
• Any nonlinear function which differentiable everywhere and increases 

everywhere with sum can be used as activation function. 
• Examples: Logistic function, arc tangent function, hyperbolic tangent 

activation function. 
These activation function makes the multilayer network to have greater 
representational power than single layer network only when non-linearity is 
introduced. 
Need of hidden layers: 
1. A network with only two layers (input and output) can only represent the 
input with whatever representation already exists in the input data. 
2. If the data is discontinuous or non-linearly separable, the innate 
representation is inconsistent, and the mapping cannot be learned using two 
layers (Input and Output). 
 
 
 
 



3. Therefore, hidden layer(s) are used between input and output layers. 
• Weights connects unit (neuron) in one layer only to those in the next 

higher layer. The output of the unit is scaled by the value of the connecting 
weight, and it is fed forward to provide a portion of the activation for the 
units in the next higher layer. 

• Backpropagation can be applied to an artificial neural network with any 
number of hidden layers. The training objective is to adjust the weights 
so that the application of a set of inputs produces the desired outputs. 

 
 
Training procedure:  
 
The network is usually trained with a large number of input-output pairs. 
 
Training Algorithm 
 
1. Generate weights randomly to small random values (both positive and 
negative) ensure that the network is not saturated by large values of weights. 
2. Choose a training pair from the training set. 
3. Apply the input vector to network input. 
4. Calculate the network output. 
5. Calculate the error, the difference between the network output and the 
desired output. 
6. Adjust the weights of the network in a way that minimizes this error. 
7. Repeat steps 2 - 6 for each pair of input-output in the training set until the 
error for the entire system is acceptably low. 
 
Forward pass and backward pass: 
 
• Backpropagation neural network training involves two passes. 
1. In the forward pass, the input signals moves forward from the network input 
to the output. 
2. In the backward pass, the calculated error signals propagate backward 
through the network, where they are used to adjust the weights. 
3. In the forward pass, the calculation of the output is carried out, layer by layer, 
in the forward direction. The output of one layer is the input to the next layer. 
 
In the reverse pass, 
a. The weights of the output neuron layer are adjusted first since the target 
value of each output neuron is available to guide the adjustment of the 
associated weights, using the delta rule. 
b. Next, we adjust the weights of the middle layers. As the middle layer neurons 
have no target values, it makes the problem complex. 



 

 
Regularization: Dataset Augmentation 
Regularization techniques are essential for preventing overfitting in machine 
learning models, including neural networks.  
Dataset augmentation is one such technique used to enhance the generalization 
ability of models by artificially increasing the size and diversity of the training 
dataset.  

 
 
 
 
 
 



Heuristic data augmentation schemes often rely on the composition of a set of 
simple transformation functions (TFs) such as rotations and flips (see Figure). 
When chosen carefully, data augmentation schemes tuned by human experts 
can improve model performance. However, such heuristic strategies in practice 
can cause large variances in end model performance and may not produce 
augmentations needed for state-of-the-art models. 
 
 

 
 
 
Data augmentation can be defined as the technique used to improve the 
diversity of the data by slightly modifying copies of already existing data or 
newly create synthetic data from the existing data. It is used to regularize the 
data and it also helps to reduce overfitting. Some of the techniques used for data 
augmentation are : 
1. Rotation (Range 0-360 degrees) 
2. flipping (true or false for horizontal flip and vertical flip) 
3. Shear range (image is shifted along x-axis or y-axis) 
4. Brightness or Contrast range (image is made lighter or darker) 
5. Cropping (resize the image) 
6. Scale (image is scaled outward or inward) 
7. Saturation (depth or intensity of the image) 
Here's how dataset augmentation works within the context of regularization: 
 
Dataset Augmentation: 
 
Dataset augmentation involves applying a variety of transformations to the 
original training data to create new, slightly modified samples. These  
 
 
 



transformations typically preserve the semantic content of the data while 
introducing variability that can help the model learn more robust and invariant 
features.  
 
Common transformations include: 
 

• Geometric transformations: Rotation, translation, scaling, cropping, 
and flipping of images. 

• Color transformations: Adjusting brightness, contrast, saturation, and 
hue of images. 

• Noise injection: Adding random noise to images or other data samples. 
• Random cropping and padding: Extracting random crops or adding 

random padding to images. 
 

By applying these transformations to the training data, the dataset is effectively 
expanded, providing the model with more diverse examples to learn from. This 
helps prevent overfitting by exposing the model to a wider range of variations 
in the data distribution. 
 
Regularization Effect: 
 
Dataset augmentation acts as a form of regularization by introducing noise and 
variability into the training process. This helps to prevent the model from 
memorizing the training examples and encourages it to learn more 
generalizable features that are invariant to the transformations applied during 
augmentation. 
 
Additionally, dataset augmentation encourages the model to learn features that 
are robust to variations commonly encountered in real-world scenarios.  
For example, by augmenting images with random rotations and translations, 
the model learns to recognize objects from different viewpoints and positions, 
leading to improved generalization performance. 
 
Implementation: 
 
Dataset augmentation is typically applied during the training phase, where each 
training sample is randomly transformed before being fed into the model for 
training. The transformed samples are treated as additional training data, 
effectively enlarging the training dataset. 
 
Modern deep learning frameworks often provide built-in support for dataset 
augmentation through data preprocessing pipelines or dedicated augmentation 
modules. These frameworks allow users to easily specify the desired 
transformations and apply them to the training data on-the-fly during training. 



 
Applying the chain rule 
Let’s use the chain rule to calculate the derivative of cost with respect to any 
weight in the network. The chain rule will help us identify how much each 
weight contributes to our overall error and the direction to update each weight 
to reduce our error. Here are the equations we need to make a prediction and 
calculate total error, or cost: 
 

 
Given a network consisting of a single neuron, total cost could be calculated as: 

 
Noise robustness  
 
In the context of machine learning, and particularly deep learning, refers to the 
ability of a model to maintain its performance and make accurate predictions 
even when presented with noisy or corrupted input data. Noise in data can arise 
from various sources, including sensor errors, transmission errors, 
environmental factors, or imperfections in data collection processes. 
Here's how noise robustness is addressed in machine learning, particularly in 
deep learning: 
 
 
 



1. Data Preprocessing: 
• Noise Removal: In some cases, it's possible to preprocess the data to 

remove or reduce noise before feeding it into the model. Techniques such 
as denoising filters, signal processing methods, or data cleaning 
algorithms can be employed to mitigate noise in the data. 
 

2. Model Architecture: 
 

• Robust Architectures: Designing models with architectures that are 
inherently robust to noise can help improve noise robustness. For 
example, architectures with skip connections or residual connections 
(e.g., ResNet) can help propagate information more effectively through 
the network, making them more resilient to noise. 

• Dropout: Dropout regularization, which randomly drops units (along 
with their connections) during training, can act as a form of noise 
injection. This helps prevent overfitting and encourages the model to 
learn more robust features that are less sensitive to noise in the input 
data. 
 

3. Data Augmentation: 
 

• Augmentation with Noise: As mentioned earlier, dataset augmentation 
can help improve noise robustness by exposing the model to a wider 
range of data variations, including noisy samples. Augmenting the 
training data with artificially added noise can help the model learn to 
ignore irrelevant noise while focusing on the relevant signal in the data. 
 

4. Training Strategies: 
 

• Adversarial Training: Adversarial training involves training the model 
on adversarially perturbed examples generated by adding carefully 
crafted noise to the input data. This helps the model learn to be robust 
against adversarial attacks, which can be considered as a form of noise. 
 

5. Uncertainty Estimation: 
• Probabilistic Models: Probabilistic deep learning models, such as 

Bayesian neural networks or ensemble methods, can provide uncertainty 
estimates along with predictions. These uncertainty estimates can help 
the model recognize when it's uncertain about its predictions, which is 
particularly useful in the presence of noisy or ambiguous input data. 
 
 
 
 
 
 
 



6. Transfer Learning: 
• Pretrained Models: Transfer learning from pretrained models trained 

on large datasets can help improve noise robustness. Pretrained models 
have learned robust features from vast amounts of data, which can 
generalize well even in the presence of noise in the target domain. 

 
Early Stopping, Bagging and Dropout 
 
Early Stopping: 
Early stopping is a regularization technique used to prevent overfitting during 
the training of machine learning models, including neural networks. The basic 
idea is to monitor the performance of the model on a separate validation set 
during training. Training is stopped early (i.e., before the model starts to overfit) 
when the performance on the validation set starts to degrade.  
Specifically, early stopping involves: 
 

• Monitoring Validation Loss: During training, the performance of the 
model is evaluated periodically on a validation set. The validation loss (or 
other evaluation metric) is calculated to assess the generalization 
performance of the model. 

• Stopping Criteria: Training is stopped when the validation loss stops 
improving or starts to increase for a certain number of epochs. This 
prevents the model from overfitting to the training data. 

Early stopping helps find the optimal point in the training process where the 
model generalizes best to unseen data, thus improving its ability to make 
accurate predictions on new samples. 
 
Bagging (Bootstrap Aggregating): 
Bagging is an ensemble learning technique that aims to improve the 
performance and robustness of machine learning models by combining 
predictions from multiple base models. It involves training multiple instances 
of the same base model on different subsets of the training data, typically using 
bootstrapping (sampling with replacement).  
 
The key steps in bagging are: 
 

• Bootstrap Sampling: Randomly sample subsets of the training data with 
replacement to create multiple training sets. 

• Base Model Training: Train a base model (e.g., decision tree, neural 
network) on each bootstrap sample independently. 

• Combination of Predictions: Combine the predictions of the base 
models by averaging (for regression) or voting (for classification) to 
make the final prediction. 

 
 
 
 



Bagging helps reduce variance and improve the stability of predictions by 
leveraging the diversity of base models trained on different subsets of the data. 
 
Pseudocode: 
1. Given training data (x₁, y₁), .... (xm, ym) 
2. For t = 1, T: 

a. Form bootstrap replicate dataset S, by selecting m random examples 
from the training set with replacement.  
b. Let h, be the result of training base learning algorithm on St 

Output Combined Classifier: 
𝐻(𝑥) = 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦(ℎ1(𝑥) … … ℎ𝑡(𝑥)) 

 
Dropout: 
Dropout is a regularization technique specifically designed for training neural 
networks to prevent overfitting. It involves randomly "dropping out" (i.e., 
deactivating) a fraction of neurons during training.  
The key aspects of dropout are: 

• Random Deactivation: During each training iteration, a fraction of 
neurons in the network is randomly set to zero with a probability p, 
typically chosen between 0.2 and 0.5. 

• Training and Inference: Dropout is only applied during training. During 
inference (i.e., making predictions), all neurons are active, but their 
outputs are scaled by the dropout probability p to maintain the expected 
output magnitude. 

• Ensemble Effect: Dropout can be interpreted as training an ensemble of 
exponentially many subnetworks, which encourages the network to learn 
more robust and generalizable features. 

Dropout effectively prevents the co-adaptation of neurons and encourages the 
network to learn more distributed representations, leading to improved 
generalization performance. 
 
Note: These techniques—early stopping, bagging, and dropout—are powerful 
tools for preventing overfitting and improving the generalization performance 
of machine learning models, including neural networks. By incorporating these 
techniques into the training process, models can become more robust and 
reliable, making them better suited for real-world applications. 
Batch Normalization 
Batch normalization is a popular technique used in deep neural networks to 
stabilize and accelerate the training process. It addresses the problem of 
internal covariate shift, which refers to the change in the distribution of 
network activations during training due to changes in the parameters of earlier 
layers. 
 
 
 
 
 



Here's how batch normalization works: 

 

 
The normalization step is as follows: 
1. Calculate the mean and variance of the activations for each feature in a mini-
batch. 
2. Normalize the activations of each feature by subtracting the mini-batch mean 
and dividing by the mini-batch standard deviation. 
3. Scale and shift the normalized values using the learnable parameters gamma 
and beta, which allow the network to undo the normalization if that is what the 
learned behavior requires. 
 
 
 
 



 
Benefits of Batch Normalization 
Batch normalization offers several benefits to the training process of deep 
neural networks: 

• Improved Optimization: It allows the use of higher learning rates, 
speeding up the training process by reducing the careful tuning of 
parameters. 

• Regularization: It adds a slight noise to the activations, similar to 
dropout. This can help to regularize the model and reduce overfitting. 

• Reduced Sensitivity to Initialization: It makes the network less 
sensitive to the initial starting weights. 

• Allows Deeper Networks: By reducing internal covariate shift, batch 
normalization allows for the training of deeper networks. 

 
VC Dimension and Neural Nets 
The Vapnik-Chervonenkis (VC) dimension is a concept from statistical learning 
theory that provides a measure of the capacity or complexity of a hypothesis 
space—the set of all possible functions that a learning algorithm can choose 
from to fit the training data. In the context of neural networks, the VC dimension 
plays an important role in understanding the expressiveness and generalization 
ability of different network architectures. 

 
 
Shattering set of examples:  
Assume a binary classification problem with N examples RD and consider the 
set of 2|N|   possible dichotomies. For instance, with N = 3 examples, set of all 
possible dichotomies is {(000), (001), (010), (011), (100), (101), (110), (111)}. 
A class of functions is said to shatter the dataset if, for every possible dichotomy, 
there is a function 𝑓(𝛼) that models it. 
Consider as an example a finite concept class C = {c1,…,c4} applied to three 
instance vectors with the results : 

 X1 X2 X3 

C1 1 1 1 
C2 0 1 1 
C3 1 0 0 
C4 0 0 0 

 
 
 
 



Then: 
𝜋𝑐({𝑥1}) = {(0), (1)} 
𝜋𝑐  ({𝑥1 , 𝑥3}) = {(0,0), (0, 1), (1,0), (1, 1)} 
𝜋𝑐  ({𝑥2 , 𝑥3}) = {(0,0), (1,1)} 

• VC dimension VC(f) is the size of the largest dataset that can be shattered 
by the set of function 𝑓(𝛼). 

• If the VC Dimension of (𝛼) is h, then there exists at least one set of h points 
that can be shattered by (𝛼), but in general it will not be true that every 
set of h points can be shattered.  

• VC dimension cannot be accurately estimated for non-linear models such 
as neural networks. The VC dimension may be infinite requiring an 
infinite amount of data. 

 
VC Dimension for Neural Networks 

 
 
 
 
 
  



Unit 5 
Recurrent Neural Networks: Introduction – Recursive Neural Networks – 
Bidirectional RNNs – Deep Recurrent Networks – Applications: Image 
Generation, Image Compression, Natural Language Processing. Complete Auto 
encoder, Regularized Autoencoder, Stochastic Encoders and Decoders, 
Contractive Encoders. 
 
Recurrent Neural Networks: Introduction 
 

• Recurrent Neural Networks (RNNs) are a type of artificial neural network 
designed to effectively deal with sequential data, where the order of 
elements matters.  

• Unlike feedforward neural networks, where the flow of data is strictly 
forward, RNNs have connections that form directed cycles, allowing them 
to exhibit dynamic temporal behavior.  

• This makes RNNs particularly suitable for tasks such as time series 
prediction, natural language processing (NLP), speech recognition, and 
more. 

• However, if we have data in a sequence such that one data point depends 
upon the previous data point, we need to modify the neural network to 
incorporate the dependencies between these data points.  

• RNNs have the concept of “memory” that helps them store the states or 
information of previous inputs to generate the next output of the 
sequence. 

 
 

A simple RNN has a feedback loop, as shown in the first diagram of the above 
figure.  
The feedback loop shown in the gray rectangle can be unrolled in three-time 
steps to produce the second network of the above figure. Of course, you can vary 
the architecture so that the network unrolls 𝑘 time steps. In the figure, the 
following notation is used: 



 

 
Hence, in the feedforward pass of an RNN, the network computes the values of 
the hidden units and the output after 𝑘 time steps. The weights associated with 
the network are shared temporally.  
Each recurrent layer has two sets of weights:  

• One for the input 
• Second for the hidden unit 
• The last feedforward layer, which computes the final output for the kth 

time step, is just like an ordinary layer of a traditional feedforward 
network. 

 
Why Recurrent Neural Networks? 
 
Recurrent Neural Networks have unique capacities as opposed to other kinds 
of Neural Networks, which open a wide range of possibilities for their users still 
also bringing some challenges with them. Then’s a rundown of the main 
benefits 

• It’s the only neural network with memory and binary data processing.  
• It can plan out several inputs and productions. Unlike other algorithms 

that deliver one product for one input, the benefit of RNN is that it can 
plot out many to many, one to many, and many to one input and 
productions. 

Types of Recurrent Neural Networks 
There are four types of Recurrent Neural Networks: 
 
 
 



 
 
 
 

• One to One 
This type of neural network is understood because the Vanilla Neural 
Network. It’s used for general machine learning problems, which 
contains a single input and one output. 

 
• One to Many 

This type of neural network incorporates a single input and multiple 
outputs. An example of this is often the image caption. 

 
• Many to One 

This RNN takes a sequence of inputs and generates one output. Sentiment 
analysis may be a example of this sort of network where a given sentence 
are often classified as expressing positive or negative sentiments. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 
 

• Many to Many 
This RNN takes a sequence of inputs and generates a sequence of outputs. 
artificial intelligence is one among the examples. 

 
 
 
Two Issues of Standard RNNs 
1. Vanishing Gradient Problem 

• Recurrent Neural Networks enable you to model time-dependent and 
sequential data problems, like stock exchange prediction, artificial 
intelligence, and text generation. you’ll find, however, RNN is tough to 
train due to the gradient problem. 
 
 
 
 
 
 
 
 



 
 
 
 

• RNNs suffer from the matter of vanishing gradients. The gradients carry 
information utilized in the RNN, and when the gradient becomes too 
small, the parameter updates become insignificant. This makes the 
training of long data sequences difficult. 

 

 
 
 
2. Exploding Gradient Problem 
 

• While training a neural network, if the slope tends to grow exponentially 
rather than decaying, this is often called an Exploding Gradient.  
 

• This problem arises when large error gradients accumulate, leading to 
very large updates to the neural network model weights during the 
training process. 
 

 

 
 
 
 
 



 
 
 
Now, let’s discuss the foremost popular and efficient thanks to cope with 
gradient problems, i.e., Long immediate memory Network (LSTMs). 
 
First, let’s understand Long-Term Dependencies. 
 
Suppose you wish to predict the last word within the text: “The clouds 
are within the ______.” 
The most obvious answer to the present is that the “sky.” We don’t need 
from now on context to predict the last word within the above sentence. 
Consider this sentence: “I are staying in Spain for the last 10 years…I can 
speak fluent ______.” 
The word you are expecting will rely on the previous couple of words in 
context. Here, you would like the context of Spain to predict the last word 
within the text, and also the most fitted answer to the present sentence 
is “Spanish.” The gap between the relevant information and the point 
where it’s needed may became very large. LSTMs facilitate to solve this 
problem. 

***************************************************************** 
 

Recursive Neural Networks (ReNNs) 
Recursive Neural Networks (ReNNs) are a type of neural network 

architecture designed to process structured data, such as hierarchical 
data structures or recursive structures. Unlike traditional feedforward or 
recurrent neural networks, which operate on fixed-sized input vectors or 
sequences, ReNNs operate on tree-like or graph-like structures, allowing 
them to model relationships between elements in a hierarchical manner. 

 
Due to their deep tree-like structure, Recursive Neural Networks 

can handle hierarchical data. The tree structure means combining child 
nodes and producing parent nodes. Each child-parent bond has a weight 
matrix, and similar children have the same weights. The number of 
children for every node in the tree is fixed to enable it to perform 
recursive operations and use the same weights. RvNNs are used when 
there's a need to parse an entire sentence. 

 
 
 
 
 
 
 
 



 
 
 
 

Difference between Recurrent neural network and recursive 
neural networks 

 
Aspect Recurrent Neural Networks 

(RNNs) 
Recursive Neural Networks 

(ReNNs) 
Architecture Sequential architecture, nodes 

connected to previous time 
steps 

Hierarchical or recursive 
architecture, nodes connected in 
a tree-like or graph-like 
structure. 

Data 
Structure 

Operates on sequential data 
where order matters 

Handles structured data with 
hierarchical or recursive 
relationships 

Training Typically trained using 
backpropagation through time 
(BPTT) 

May involve specialized 
algorithms for handling the 
recursive structure (e.g., BPTS) 

Applications Language modeling, machine 
translation, sentiment analysis, 
time series prediction 

Parsing syntactic or semantic 
structures in NLP, analyzing 
hierarchical structures in images 
or videos, processing hierarchical 
data in bioinformatics 

 

 
 
 
A Recursive Neural Networks is more like a hierarchical network where 
there is really no time aspect to the input sequence but the input has to 
be processed hierarchically in a tree fashion. Here is an example of how a 
recursive neural network looks. It shows the way to learn a parse tree of 
a sentence by recursively taking the output of the operation performed 
on a smaller chunk of the text. 



 
• The children of each parent node are just a node like that node. 

RvNNs comprise a class of architectures that can work with 
structured input. The network looks at a series of inputs, each time 
at x1, x2… and prints the results of each of these inputs. 

• This means that the output depends on the number of neurons in 
each layer of the network and the number of connections between 
them. The simplest form of a RvNNs, the vanilla RNG, resembles a 
regular neural network. Each layer contains a loop that allows the 
model to transfer the results of previous neurons from another 
layer. 

• Schematically, RvNN layer uses a loop to iterate through a 
timestamp sequence while maintaining an internal state that 
encodes all the information about that timestamp it has seen so far. 

 
 

Features of Recursive Neural Networks 
• A recursive neural network is created in such a way that it includes 

applying same set of weights with different graph like structures. 
• The nodes are traversed in topological order. 
• This type of network is trained by the reverse mode of automatic 

differentiation. 
• Natural language processing includes a special case of recursive 

neural networks. 
• This recursive neural tensor network includes various 

composition functional nodes in the tree. 
Challenges: 
While Recursive Neural Networks offer advantages for modelling 
structured data, they also come with challenges: 
 
 
 
 
 
 



 
 
 

• Computational Complexity: Processing recursive structures can be 
computationally expensive, especially for deep trees or graphs with many 
nodes. 

• Data Representation: Representing complex structures in a fixed-
dimensional vector space can be challenging, especially for structures 
with varying sizes or irregularities. 

• Training Difficulty: Training ReNNs may require specialized algorithms 
and techniques to handle the recursive nature of the network and 
mitigate issues such as vanishing gradients. 
 

Bidirectional Recurrent Neural Networks (Bi-RNNs) 
 

Bidirectional Recurrent Neural Networks (Bi-RNNs) are an extension of 
traditional Recurrent Neural Networks (RNNs) that can capture both past and 
future information at each time step. In standard RNNs, the prediction at a given 
time step depends only on the past history of the sequence. However, in many 
applications, it's beneficial to consider both past and future context to make 
better predictions. 
The architecture of a Bidirectional RNN involves two separate recurrent layers:  
 

1. One processing the input sequence in the forward direction 
2. Another processing the sequence in the backward direction.  
 
Each layer computes hidden states at each time step, considering 

information from both past and future context. The final output at each time 
step is typically a concatenation of the forward and backward hidden states. 

 

 
 
Working of Bidirectional Recurrent Neural Network 
  
Inputting a sequence:  
A sequence of data points, each represented as a vector with the same 
dimensionality, are fed into a BRNN. The sequence might have different lengths. 
 
 
 
 



 
 
 
Dual Processing:   
 
Both the forward and backward directions are used to process the data. On the 
basis of the input at that step and the hidden state at step t-1, the hidden state 
at time step t is determined in the forward direction. The input at step t and the 
hidden state at step t+1 are used to calculate the hidden state at step t in a 
reverse way. 
 
Computing the hidden state:  
 
A non-linear activation function on the weighted sum of the input and previous 
hidden state is used to calculate the hidden state at each step. This creates a 
memory mechanism that enables the network to remember data from earlier 
steps in the process. 
 
Determining the output:  
 
A non-linear activation function is used to determine the output at each step 
from the weighted sum of the hidden state and a number of output weights. This 
output has two options: it can be the final output or input for another layer in 
the network. 
 
Training:  
 
The network is trained through a supervised learning approach where the goal 
is to minimize the discrepancy between the predicted output and the actual 
output. The network adjusts its weights in the input-to-hidden and hidden-to-
output connections during training through backpropagation. 
To calculate the output from an RNN unit, we use the following formula: 

 
where, 
A = activation function, W = weight matrix, b = bias 
 
The training of a BRNN is similar to backpropagation through a time 
algorithm. BPTT algorithm works as follows: 
 

• Roll out the network and calculate errors at each iteration 
• Update weights and roll up the network. 

 
However, because forward and backward passes in a BRNN occur 
simultaneously, updating the weights for the two processes may occur at the 
same time. This produces inaccurate outcomes. Thus, the following approach is  
 
 
 
 



 
 
 
used to train a BRNN to accommodate forward and backward passes 
individually. 
 
Advantages of Bidirectional RNN 
 

• Context from both past and future:  
With the ability to process sequential input both forward and backward, 
BRNNs provide a thorough grasp of the full context of a sequence. 
Because of this, BRNNs are effective at tasks like sentiment analysis and 
speech recognition. 
 

• Enhanced accuracy:  
BRNNs frequently yield more precise answers since they take both 
historical and upcoming data into account. 
 

• Efficient handling of variable-length sequences:  
When compared to conventional RNNs, which require padding to have a 
constant length, BRNNs are better equipped to handle variable-length 
sequences. 
 

• Resilience to noise and irrelevant information:  
BRNNs may be resistant to noise and irrelevant data that are present in 
the data. This is so because both the forward and backward paths offer 
useful information that supports the predictions made by the network. 
 

• Ability to handle sequential dependencies:  
BRNNs can capture long-term links between sequence pieces, making 
them extremely adept at handling complicated sequential dependencies. 
 

Applications of Bidirectional Recurrent Neural Network 
 
Bi-RNNs have been applied to various natural language processing (NLP) tasks, 
including: 
 

• Sentiment Analysis:  
By taking into account both the prior and subsequent context, BRNNs can 
be utilized to categorize the sentiment of a particular sentence. 
 

• Named Entity Recognition:  
By considering the context both before and after the stated thing, BRNNs 
can be utilized to identify those entities in a sentence. 
 

• Part-of-Speech Tagging:  
The classification of words in a phrase into their corresponding parts of 
speech, such as nouns, verbs, adjectives, etc., can be done using BRNNs. 
 
 
 



 
 

• Machine Translation:  
BRNNs can be used in encoder-decoder models for machine translation, 
where the decoder creates the target sentence and the encoder analyses 
the source sentence in both directions to capture its context. 
 

• Speech Recognition:  
When the input voice signal is processed in both directions to capture the 
contextual information, BRNNs can be used in automatic speech 
recognition systems. 
 

Disadvantages of Bidirectional RNN 
 

• Computational complexity:  
Given that they analyze data both forward and backward, BRNNs can be 
computationally expensive due to the increased amount of calculations 
needed. 
 

• Long training time:  
BRNNs can also take a while to train because there are many parameters 
to optimize, especially when using huge datasets. 
 

• Difficulty in parallelization:  
Due to the requirement for sequential processing in both the forward and 
backward directions, BRNNs can be challenging to parallelize. 
 

• Overfitting:  
BRNNs are prone to overfitting since they include many parameters that 
might result in too complicated models, especially when trained on short 
datasets. 
 

• Interpretability:  
Due to the processing of data in both forward and backward directions, 
BRNNs can be tricky to interpret since it can be difficult to comprehend 
what the model is doing and how it is producing predictions. 

 
 

Deep recurrent networks (DRNs) 
 

• Deep recurrent networks (DRNs) are a class of neural networks that 
combine the concepts of deep learning and recurrent neural networks 
(RNNs).  
 

• RNNs are a type of neural network designed to work with sequential data, 
where the output of each step is dependent on the previous steps.  
 

 
 



 
 
 

 
• This makes them particularly suitable for tasks like natural language 

processing (NLP), time series prediction, and speech recognition. 
 

• Deep recurrent networks extend the capabilities of traditional RNNs by 
stacking multiple layers of recurrent units, allowing for the creation of 
deeper architectures.  

 
• Each layer in a DRN passes its output as input to the next layer, enabling 

the network to learn hierarchical representations of sequential data. 
 

• Deep recurrent networks have been successfully applied to various tasks, 
including sequence prediction, language modeling, machine translation, 
and speech recognition.  

 
• They have demonstrated superior performance compared to shallow 

recurrent networks in many cases, especially when dealing with complex 
sequential data with long-range dependencies. 
 

 
There are several types of recurrent units that can be used in deep recurrent 
networks, such as: 
 

• Vanilla RNNs:  
These are the simplest form of recurrent units, where the output is 
computed based on the current input and the previous hidden state. 

• Long Short-Term Memory (LSTM):  
LSTMs are a type of recurrent unit that introduces gating mechanisms to 
control the flow of information within the network, allowing it to learn 
long-range dependencies more effectively and mitigate the vanishing 
gradient problem. 

• Gated Recurrent Units (GRUs):  
GRUs are like LSTMs but have a simpler structure with fewer parameters, 
making them computationally more efficient. 



 
 

 
Steps to develop a deep RNN application 
Developing an end-to-end deep RNN application involves several steps, 
including data preparation, model architecture design, training the model, and 
deploying it. Here is an example of an end-to-end deep RNN application for 
sentiment analysis. 
 
 
 
 
 



 
 
 
Data preparation:  
The first step is to gather and preprocess the data. In this case, we’ll need a 
dataset of text reviews labelled with positive or negative sentiment. The text 
data needs to be cleaned, tokenized, and converted to the numerical format. 
This can be done using libraries like NLTK or spaCy in Python. 
 
Model architecture design: 
The next step is to design the deep RNN architecture. We’ll need to decide on 
the number of layers, number of hidden units, and type of recurrent unit (e.g. 
LSTM or GRU). We’ll also need to decide how to handle the input and output 
sequences, such as using padding or truncation. 
 
Training the model:  
Once the architecture is designed, we’ll need to train the model using the 
preprocessed data. We’ll split the data into training and validation sets and train 
the model using an optimization algorithm like stochastic gradient descent. 
We’ll also need to set hyperparameters like learning rate and batch size. 
 
Evaluating the model:  
After training, we’ll evaluate the model’s performance on a separate test set. 
We’ll use metrics like accuracy, precision, recall, and F1 score to assess the 
model’s performance. 
 
Deploying the model:  
Finally, we’ll deploy the trained model to a production environment, where it 
can be used to classify sentiment in real-time. This could involve integrating the 
model into a web application or API. 
 
Processing Diagram of Deep Recurrent Networks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This block diagram provides a high-level overview of the architecture of a 
deep recurrent network. 
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• Input Sequence:  
This is the sequential data fed into the network. It could be text, time-
series data, audio, etc. 
 

• Embedding Layer:  
Converts the input sequence into a dense representation suitable for 
processing by the recurrent layers. It typically involves mapping each 
element of the sequence (e.g., word or data point) to a high-dimensional 
vector space. 
 

• Recurrent Layers:  
Consist of multiple recurrent units stacked together. Each layer processes 
the input sequence sequentially, capturing temporal dependencies. 
Common types of recurrent units include vanilla RNNs, LSTMs, and GRUs. 
 

• Output Layer:  
Takes the output from the recurrent layers and produces the final 
prediction or output. The structure of this layer depends on the specific 
task, such as classification (e.g., softmax activation) or regression (e.g., 
linear activation). 
 

• Output (Prediction):  
The final output of the network, which could be a sequence of predictions 
for each time step or a single prediction for the entire sequence, 
depending on the task. 
 
 

Deep recurrent networks (DRNs) offer several advantages: 
 

• Hierarchical Representation Learning:  
With multiple layers of recurrent units, DRNs can learn hierarchical 
representations of sequential data. Each layer can capture different levels 
of abstraction, allowing the network to extract complex features from the 
input sequence. 

• Modeling Long-term Dependencies:  
Deep architectures enable DRNs to capture long-range dependencies in 
sequential data more effectively. By stacking recurrent layers, the 
network can maintain and propagate information over longer sequences, 
which is crucial for tasks involving context or memory over extended 
periods. 

• Improved Expressiveness:  
Deeper architectures provide more expressive power, allowing DRNs to 
learn complex patterns and relationships within sequential data. This 
increased expressiveness can lead to better performance on tasks that 
require modeling intricate dependencies or understanding subtle 
variations in the data. 
 
 
 



 
 

• Better Feature Abstraction:  
Each layer in a DRN learns to abstract features from the input sequence, 
leading to a hierarchy of representations. This hierarchical feature 
extraction can facilitate learning informative and discriminative features, 
which are essential for tasks like sequence classification, language 
modeling, and machine translation. 
 

• Transfer Learning:  
Pre-training deep recurrent networks on large-scale datasets for related 
tasks (e.g., language modeling) and fine-tuning them for specific tasks 
often leads to improved performance. The hierarchical representations 
learned during pre-training capture generic features of the data, which 
can be beneficial for downstream tasks with limited labeled data. 
 
Disadvantages of Deep recurrent networks (DRNs) 
 

• Vanishing/Exploding Gradient Problem:  
Training deep recurrent networks can be challenging due to the 
vanishing or exploding gradient problem. As gradients are 
backpropagated through multiple layers during training, they can 
become either extremely small (vanishing) or extremely large 
(exploding), which hinders learning and stability. Techniques like 
gradient clipping and careful initialization of weights are often necessary 
to mitigate this issue. 
 

• Computational Complexity:  
Deep recurrent networks with multiple layers can be computationally 
expensive to train and deploy, especially when dealing with large-scale 
datasets or complex architectures. The computational complexity 
increases with the number of layers, making it challenging to train deep 
models on resource-constrained devices or in real-time applications. 
 

• Long Training Time:  
Training deep recurrent networks requires significant computational 
resources and time, especially when dealing with large datasets and 
complex architectures. The training process often involves multiple 
iterations over the entire dataset, which can take hours, days, or even 
weeks depending on the size of the data and the complexity of the model. 
 

• Overfitting:  
Deep recurrent networks are prone to overfitting, especially when 
dealing with small datasets or overly complex models. With a large 
number of parameters, deep models have a high capacity to memorize 
noise or irrelevant patterns in the training data, leading to poor 
generalization performance on unseen data. Regularization techniques 
such as dropout and weight decay are commonly used to prevent 
overfitting. 
 
 



 
 

• Difficulty in Interpretability:  
Understanding the internal workings of deep recurrent networks and 
interpreting their decisions can be challenging. With multiple layers of 
non-linear transformations, it can be difficult to interpret the learned 
representations and understand how the network arrives at a particular 
prediction. This lack of interpretability can be a significant drawback in 
applications where transparency and interpretability are essential. 

 
Application: Image Generation 

 
• Generating images using recurrent neural networks (RNNs) is an exciting 

application that leverages the sequential nature of RNNs to produce 
images pixel by pixel.  

• While RNNs are not commonly used for image generation due to their 
sequential processing nature and the high dimensionality of image data, 
they can still be applied for certain types of image generation tasks. 

• RNN-based approaches can still be useful in scenarios where sequential 
processing or conditioning on external information is desirable. 

 
Architecture diagram which can generate images from text descriptions: 

 

 
▪ Semantic information from the textual description was used as input in 

the generator model, which converts characteristic information to pixels 
and generates the images.  

▪ This generated image was used as input in the discriminator along with 
real/wrong textual descriptions and real sample images from the dataset. 

▪ A sequence of distinct (picture and text) pairings are then provided as 
input to the model to meet the goals of the discriminator: input pairs of 
real images and real textual descriptions, wrong images and mismatched 
textual descriptions, and generated images and real textual descriptions.  

▪ The real photo and real text combinations are provided so that the model 
can determine if a particular image and text combination align. An 
incorrect picture and real text description indicates that the image does 
not match the caption.  

 
 
 
 



 
 
 

▪ The discriminator is trained to identify real and generated images. At the 
start of training, the discriminator was good at classification of 
real/wrong images. Loss was calculated to improve the weight and to 
provide training feedback to the generator and discriminator model.  

▪ As soon as the training proceeded, the generator produced more realistic 
images and it fooled the discriminator when distinguishing between real 
and generated images. 

 
Here's how it can be done: 

• Text-to-Image Generation:  
One common approach to image generation using RNNs is to generate 
images conditioned on textual descriptions. In this setup, an RNN, such 
as a Long Short-Term Memory (LSTM) network, is used to process the 
input text, encoding the semantic information into a fixed-length vector 
representation. This vector is then used as a conditioning input to 
another network, typically a Generative Adversarial Network (GAN) or a 
Variational Autoencoder (VAE), which generates the corresponding 
image. 

• Sequence-to-Sequence Generation:  
Another approach is to directly generate images pixel by pixel using 
autoregressive models. In this setup, an RNN is trained to predict the next 
pixel in the image sequence given the previous pixels. This process is 
repeated iteratively until the entire image is generated. Variants of RNNs, 
such as PixelRNN and PixelCNN, have been proposed for this task, where 
the model predicts the color value of each pixel conditioned on the 
previously generated pixels. 

• Conditional Image Generation:  
RNNs can also be used for conditional image generation, where the 
generation process is conditioned on some input information. For 
example, the input could be a low-resolution image, a sketch, or a set of 
object labels. The RNN processes this input and generates the 
corresponding high-resolution image or completes the missing parts of 
the input image. 

• Data Augmentation:  
RNNs can be used to generate synthetic images for data augmentation 
purposes. By training an RNN to generate realistic images similar to the 
training data distribution, additional training samples can be generated 
to increase the diversity of the dataset and improve the generalization 
performance of image classification or object detection models. 

• Artistic Style Transfer:  
RNNs can be used for artistic style transfer, where the style of one image 
is transferred to the content of another image. In this setup, the RNN is 
trained to generate an image that matches the content of one image while  
 
 
 
 
 



 
 
 
incorporating the style features learned from another image. This 
process typically involves optimizing a loss function that balances 
content preservation and style transfer. 
 
 

Application: Image Compression 
 

▪ Image compression is a method to remove spatial redundancy between 
adjacent pixels and reconstruct a high-quality image.  

▪ In the past few years, deep learning has gained huge attention from the 
research community and produced promising image reconstruction 
results.  

▪ Therefore, recent methods focused on developing deeper and more 
complex networks, which significantly increased network complexity 

▪ Using recurrent neural networks (RNNs) for image compression is an 
innovative application that leverages the sequential processing capability 
of RNNs to effectively encode and compress image data. 

 
Architecture Diagram of image compression framework based on 
Recurrent Neural Network (RNN) 

 
In above diagram, there are three modules with two additional novel blocks in 
the end-to-end framework, i.e., encoder network, analysis block, binarizer, 
decoder network, and synthesis block. Image patches are directly given to the 
analysis block as an input that generates latent features using the proposed 
analysis encoder block. The entire framework architecture is presented in 
architecture diagram.  
 
 
 
 
 
 
 



 
 
 
The single iteration of the end-to-end framework is represented in below 
Equation. 

 
The training process of image compression network is optimized by adopting 
the loss at each iteration based on actual weighted and predicted value. 

 
Here's how RNNs can be applied for image compression: 

▪ Sequence-to-Sequence Compression: 
In this approach, the input image is divided into a sequence of patches or 
blocks. Each block is then sequentially processed by an RNN, such as a 
Long Short-Term Memory (LSTM) network or a Gated Recurrent Unit 
(GRU). The RNN compresses the information in each block into a fixed-
length vector representation, capturing the essential features of the 
image content. 

▪ Hierarchical Compression:  
Another approach involves using a hierarchical RNN architecture for 
compression. In this setup, multiple layers of RNNs are stacked together, 
with each layer processing increasingly abstract representations of the 
image. The lower layers capture fine-grained details, while the higher 
layers capture more global structures and patterns. This hierarchical 
representation enables efficient compression of images with varying 
levels of detail. 

▪ Conditional Compression:  
RNNs can be conditioned on contextual information to improve 
compression performance. For example, the compression process can be 
conditioned on the image content, image resolution, or specific 
compression requirements (e.g., target compression ratio). By 
incorporating additional information into the compression model, RNNs 
can adapt their encoding strategy to better preserve important features 
of the input image. 
 
 
 
 
 
 
 



 
 

▪ Lossy Compression:  
RNN-based compression models can be trained to perform lossy 
compression, where some information in the input image is discarded to 
achieve higher compression ratios. The RNN learns to prioritize 
important features while discarding less critical information, resulting in 
compact representations of the input images. Techniques such as 
quantization and entropy coding can be combined with RNN-based 
compression to further improve compression efficiency. 

 
▪ Learned Compression Algorithms:  

Instead of handcrafting compression algorithms, RNNs can be trained to 
learn effective compression strategies directly from data. By optimizing 
compression performance using techniques such as autoencoders or 
reinforcement learning, RNN-based compression models can adapt to the 
statistical properties of different types of images and achieve better 
compression ratios. 

 
Application: Natural Language Processing 

 
▪ Natural Language Processing (NLP) using recurrent neural networks 

(RNNs) is a prominent area of research and application.  
▪ RNNs, with their ability to model sequential data, are well-suited for 

various NLP tasks that involve understanding and generating natural 
language. 

▪ RNNs play a vital role in various NLP tasks by effectively modeling the 
sequential nature of natural language and capturing the contextual 
dependencies in text data.  

▪ Their versatility and ability to handle sequential data make them a 
powerful tool for understanding, generating, and processing natural 
language in a wide range of applications. 

▪ RNN are effective for sequential data processing. In RNN computation is 
recursively applied to each instance of input sequence from previous 
computed results. Recurrent unit is sequentially fed with the sequences 
represented by fixed size vector of tokens.  

RNN based framework for NLP is shown in Figure below: 

 
The advantage of RNN is that it can memorize the results of previous 
computation and utilize that information in current computation.  
So, it is possible to model context dependencies in inputs of arbitrary length  
 
 
 
 
 



 
 
 
with RNN and proper composition of input can be created.  
Mainly RNNs are used in different NLP tasks like,  

▪ Natural language generation (e.g. image captioning, machine translation, 
visual question answering)  

▪ Word - level classification (e.g. Named Entity recognition (NER)) 
▪ Language modelling  
▪ Semantic matching  
▪ Sentence-level classification (e.g., sentiment polarity) 

Here are some key applications of RNNs in NLP: 
✓ Sequence Modelling:  

RNNs excel at sequence modelling tasks, such as language modelling and 
text generation. They can be trained to predict the next word in a 
sentence given the previous words, capturing the sequential 
dependencies in the language. Language models based on RNNs have 
been used for tasks like speech recognition, machine translation, and 
autocomplete suggestions. 

✓ Machine Translation:  
RNNs, particularly the sequence-to-sequence (seq2seq) architecture, 
have been widely used for machine translation tasks. In this setup, an 
RNN encoder processes the input sentence in the source language, and 
another RNN decoder generates the corresponding translation in the 
target language. This approach has been extended with attention 
mechanisms to handle longer sentences and improve translation quality. 

✓ Sentiment Analysis:  
RNNs are effective for sentiment analysis tasks, where the goal is to 
determine the sentiment or opinion expressed in a piece of text. By 
processing the text sequentially and capturing the contextual 
information, RNNs can classify text into different sentiment categories 
(e.g., positive, negative, neutral). They have been used for sentiment 
analysis in social media posts, customer reviews, and news articles. 

✓ Named Entity Recognition (NER):  
RNNs have been applied to named entity recognition tasks, where the 
goal is to identify and classify entities (e.g., persons, organizations, 
locations) mentioned in text. By modelling the sequential context of the 
text, RNNs can learn to recognize and classify entities based on their 
surrounding words and phrases. This is useful in applications like 
information extraction and text summarization. 

✓ Part-of-Speech Tagging:  
RNNs can be used for part-of-speech (POS) tagging, where each word in 
a sentence is assigned a grammatical category (e.g., noun, verb, 
adjective). By considering the sequential context of the words, RNNs can  
 
 
 
 
 
 
 



 
 
 
learn to predict the POS tags more accurately, even for ambiguous cases. 
POS tagging is an essential component in many NLP pipelines and 
applications. 

✓ Text Classification:  
RNNs are commonly used for text classification tasks, such as document 
categorization, topic modelling, and spam detection. By processing the 
text sequentially and capturing the semantic information, RNNs can learn 
to classify documents or sentences into different categories based on 
their content. They have been used in various domains, including news 
categorization, customer support, and email filtering. 

✓ Dialogue Systems:  
RNNs have been employed in dialogue systems, also known as chatbots 
or conversational agents, to generate responses in natural language. By 
modelling the sequential interaction between users and the system, 
RNNs can generate contextually relevant and coherent responses to user 
queries or prompts. Dialogue systems based on RNNs have been used in 
virtual assistants, customer service bots, and language learning 
applications. 

 
 

Complete Auto Encoder 
 
 

✓ An autoencoder is a type of artificial neural network used for 
unsupervised learning of efficient data representations.  

✓ Autoencoders emerge as a fascinating subset of neural networks, offering 
a unique approach to unsupervised learning.  

✓ Autoencoders are an adaptable and strong class of architectures for the 
dynamic field of deep learning, where neural networks develop 
constantly to identify complicated patterns and representations.  

✓ With their ability to learn effective representations of data, these 
unsupervised learning models have received considerable attention and 
are useful in a wide variety of areas, from image processing to anomaly 
detection. 

It consists of two main components:  
✓ An encoder: The encoder compresses the input data into a latent 

representation. 
✓ A decoder: The decoder reconstructs the original input from the latent 

representation. 
 
 
 
 
 
 
 
 
 



 
Architecture of Complete Auto Encoder 

 
 
 

 
• Basically, autoencoders are approximators for the identity operation; 

therefore learning these weights might seem trivial; but by constraining 
the parameters (such as number of nodes or number of connections), 
interesting representations can be uncovered in the data.  

• Most real datasets are structured i.e. they have a high degree of local 
correlations; usually, the autoencoder can exploit these correlations and 
yield compressed representations. However, autoencoders are not 
usually used for compression, rather they are used for learning the 
representations which are later used for classification i.e. for feature 
learning. 

• Autoencoders can come in various architectures, each serving different 
purposes and having different properties.  

Here are some types of complete autoencoders: 
• Vanilla Autoencoder:  

A vanilla autoencoder consists of an encoder and a decoder where both 
are fully connected neural networks. It aims to learn a compressed 
representation of the input data without any specific constraints on the 
learned representations. 
 
 
 
 
 



 
 

• Sparse Autoencoder:  
In a sparse autoencoder, additional constraints are imposed on the 
learned representations to encourage sparsity. This can be achieved by 
adding a sparsity penalty term to the loss function, such as L1 
regularization or the Kullback-Leibler (KL) divergence. 

• Denoising Autoencoder:  
Denoising autoencoders are trained to reconstruct clean data from 
corrupted inputs. During training, noise is added to the input data, and 
the model is trained to reconstruct the original, noise-free data. This 
helps the model learn more robust and informative representations. 

• Variational Autoencoder (VAE):  
VAEs are probabilistic autoencoders that learn a latent variable model of 
the data. They aim to capture the underlying probability distribution of 
the input data in the latent space and generate new samples by sampling 
from this distribution. VAEs consist of an encoder that outputs the 
parameters of a probability distribution (e.g., mean and variance) and a 
decoder that samples from this distribution to generate reconstructions. 

• Contractive Autoencoder:  
Contractive autoencoders are trained to learn representations that are 
robust to small perturbations in the input data. They achieve this by 
adding a penalty term to the loss function that penalizes the Frobenius 
norm of the Jacobian matrix of the encoder with respect to the input data. 

• Adversarial Autoencoder (AAE):  
AAEs combine autoencoders with adversarial training techniques. They 
consist of an encoder-decoder pair trained to reconstruct the input data, 
along with a discriminator network that tries to distinguish between the 
latent representations learned by the encoder and samples from a prior 
distribution. 

• Convolutional Autoencoder:  
Convolutional autoencoders use convolutional layers instead of fully 
connected layers in both the encoder and decoder. They are particularly 
well-suited for image data and can capture spatial dependencies more 
effectively compared to vanilla autoencoders. 

• Recurrent Autoencoder:  
Recurrent autoencoders utilize recurrent neural networks (RNNs) in 
either the encoder, decoder, or both. They are useful for sequential data, 
such as time series or natural language sequences, and can capture 
temporal dependencies in the input data. 

 
 
 
 
 
 
 
 
 
 
 



 
 

Regularized autoencoders 
 

• Regularized autoencoders are a type of autoencoder that incorporates 
regularization techniques to improve the quality of learned 
representations and prevent overfitting.  

• These techniques impose additional constraints on the autoencoder's 
training process, encouraging it to learn more robust and generalizable 
representations of the input data.  

• Regularization helps prevent the autoencoder from memorizing the 
training data and capturing noise, resulting in better performance on 
unseen data. 

• Regularized autoencoders are widely used in various applications, 
including dimensionality reduction, feature learning, data denoising, and 
anomaly detection.  

• By incorporating regularization techniques into the training process, 
regularized autoencoders can learn more informative and generalizable 
representations of the input data, leading to better performance on 
downstream tasks. 
 

 
 
Structure of Regularized Autoencoders 
Let’s dive into the structural nuances that differentiate regularized 
autoencoders from their traditional counterparts. 
Neuronal Arrangement: 
The arrangement remains like traditional autoencoders, with an encoder and a 
decoder. The deviation lies in the incorporation of regularization methods 
within the layers. 
Activation Functions: 
Regularized autoencoders may employ specific activation functions tailored for 
regularization, contributing to a more balanced learning process. 
 
 



 
 
Incorporating Regularization Methods: 
Regularization methods, such as dropout or L1/L2 regularization, are 
integrated into the architecture to curb overfitting. 
 
Some common regularization techniques used in regularized 
autoencoders include: 
 

• L1 and L2 Regularization:  
L1 and L2 regularization penalize the magnitude of the weights in the 
autoencoder's neural network. By adding a regularization term to the 
loss function proportional to either the L1 or L2 norm of the weights, 
these techniques encourage sparsity (in the case of L1 regularization) or 
small weights (in the case of L2 regularization), helping prevent 
overfitting. 
 

• Dropout:  
Dropout is a regularization technique that randomly sets a fraction of the 
input units to zero during each training iteration. This helps prevent the 
autoencoder's neural network from relying too heavily on any individual 
input features, forcing it to learn more robust representations. 
 

• Batch Normalization:  
Batch normalization normalizes the activations of each layer in the 
autoencoder's neural network, helping stabilize and accelerate the 
training process. By reducing internal covariate shift, batch 
normalization acts as a regularizer, making the autoencoder more 
resistant to overfitting. 
 

• Noise Injection:  
Noise injection involves adding noise to the input data or the activations 
of the autoencoder's hidden layers during training. This helps prevent the 
autoencoder from memorizing the training data and encourages it to 
learn more generalizable representations. 
 

• Contractive Regularization:  
Contractive regularization penalizes the Frobenius norm of the Jacobian 
matrix of the encoder with respect to the input data. This encourages the 
encoder to learn representations that are invariant to small changes in 
the input data, making the autoencoder more robust to variations in the 
input. 

 
 
 
 
 
 
 
 
 



 
 
 

Stochastic Encoders and Decoders 
 

• Stochastic encoders and decoders are components of probabilistic 
autoencoder models, such as Variational Autoencoders (VAEs).  

• These components introduce stochasticity into the encoding and 
decoding process, enabling the model to learn a probabilistic 
representation of the input data distribution. 

• Stochastic encoders and decoders in VAEs enable various applications, 
including generative modelling, data synthesis, and unsupervised 
representation learning.  

• They provide a principled framework for learning complex data 
distributions and generating new samples from these distributions. 

 
 
Stochastic Encoder:  
In a VAE, the encoder network outputs the parameters of a probability 
distribution instead of a deterministic encoding. Instead of directly 
outputting the latent representation of the input data, the encoder 
outputs the mean and variance (or other parameters) of a Gaussian 
distribution that represents the distribution of possible latent variables 
given the input. The latent variable is then sampled from this distribution 
to generate a stochastic representation. 
 
Stochastic Decoder:  
Similarly, the decoder network in a VAE accepts a sampled latent variable 
as input instead of a deterministic encoding. This sampled latent variable 
is generated by sampling from the distribution outputted by the encoder. 
The decoder then generates the reconstructed output based on this 
sampled latent variable. 
 
 
 
 
 
 
 



 
 

 
 

 
Cost Function Calculation 

 
The cost function of VAE is based on log likelihood maximization.  
The cost function consists of reconstruction and regularization error 
terms: 

Cost = Reconstruction Error + Regularization Error 
 

 
Contractive autoencoders 

 
• Contractive autoencoders are a variant of autoencoders that incorporate 

a regularization term known as contractive regularization.  
• The goal of contractive regularization is to encourage the autoencoder's 

encoder network to learn a more robust and stable representation of the 
input data by penalizing variations in the input space. 

• In a contractive autoencoder, the contractive regularization term is added 
to the loss function during training. This regularization term penalizes 
the Frobenius norm of the Jacobian matrix of the encoder's output with 
respect to the input data.  

• Intuitively, this penalizes variations in the input space by encouraging the 
encoder to learn representations that are insensitive to small changes in 
the input data. 

 
 
 
 
 
 



 
 

• Contractive autoencoder simply targets to learn invariant 
representations to unimportant transformations for the given data. 

• CAE surpasses results obtained by regularizing autoencoder using 
weight decay or by denoising. CAE is a better choice than denoising 
autoencoder to learn useful feature extraction. 

 
 
 

• During training, the contractive autoencoder is optimized to minimize 
the reconstruction error (e.g., mean squared error) while simultaneously 
minimizing the contractive regularization term.  

• This encourages the encoder to learn representations that capture the 
underlying structure of the data while being robust to small 
perturbations in the input space. 

• Contractive autoencoders have been applied in various domains, 
including dimensionality reduction, feature learning, and data denoising.  

• They are particularly useful in scenarios where the input data is noisy or 
contains small variations, as they encourage the autoencoder to learn 
stable and invariant representations of the data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
The benefits and applications of contractive autoencoders include: 

• Robustness to Noise: Contractive regularization encourages the 
encoder to learn representations that are robust to small variations and 
noise in the input data. This makes contractive autoencoders suitable for 
tasks involving noisy or corrupted data, such as denoising autoencoding 

• Improved Generalization: By penalizing variations in the input space, 
contractive regularization helps prevent overfitting and improves the 
generalization performance of the autoencoder. This allows the model to 
learn more generalizable representations of the data that can be applied 
to unseen examples. 

• Feature Learning: Contractive autoencoders can learn informative and 
discriminative features from the input data by capturing the underlying 
structure of the data distribution. These learned features can be used for 
downstream tasks such as classification, clustering, or anomaly 
detection. 

• Dimensionality Reduction: The compact and stable representations 
learned by contractive autoencoders can be used for dimensionality 
reduction tasks. By projecting high-dimensional data into a lower-
dimensional space while preserving important information, contractive 
autoencoders facilitate visualization, data compression, and efficient 
storage. 

• Unsupervised Learning: Contractive autoencoders belong to the class 
of unsupervised learning algorithms, as they do not require labelled data 
during training. This makes them suitable for tasks where labelled data 
is scarce or expensive to obtain, allowing for the extraction of useful 
information from large amounts of unlabelled data. 
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	Example of Gradient Descent
	Let’s say you are playing a game where the players are at the top of a mountain, and they are asked to reach the lowest point of the mountain. Additionally, they are blindfolded. So, what approach do you think would make you reach the lake?
	Take a moment to think about this before you read on.
	The best way is to observe the ground and find where the land descends. From that position, take a step in the descending direction and iterate this process until we reach the lowest point.
	Finding the lowest point in a hilly landscape. (Source: Fisseha Berhane)
	Gradient descent is an iterative optimization algorithm for finding the local minimum of a function.
	To find the local minimum of a function using gradient descent, we must take steps proportional to the negative of the gradient (move away from the gradient) of the function at the current point. If we take steps proportional to the positive of the gr...
	Gradient descent was originally proposed by CAUCHY in 1847. It is also known as steepest descent.
	Source: Clairvoyant
	The goal of the gradient descent algorithm is to minimize the given function (say cost function). To achieve this goal, it performs two steps iteratively:
	1. Compute the gradient (slope), the first order derivative of the function at that point
	2. Make a step (move) in the direction opposite to the gradient, opposite direction of slope increase from the current point by alpha times the gradient at that point
	Alpha is called Learning rate – a tuning parameter in the optimization process. It decides the length of the steps.
	How Does Gradient Descent Work?
	1. Gradient descent is an optimization algorithm used to minimize the cost function of a model.
	2. The cost function measures how well the model fits the training data and is defined based on the difference between the predicted and actual values.
	3. The gradient of the cost function is the derivative with respect to the model’s parameters and points in the direction of the steepest ascent.
	4. The algorithm starts with an initial set of parameters and updates them in small steps to minimize the cost function.
	5. In each iteration of the algorithm, the gradient of the cost function with respect to each parameter is computed.
	6. The gradient tells us the direction of the steepest ascent, and by moving in the opposite direction, we can find the direction of the steepest descent.
	7. The size of the step is controlled by the learning rate, which determines how quickly the algorithm moves towards the minimum.
	8. The process is repeated until the cost function converges to a minimum, indicating that the model has reached the optimal set of parameters.
	9. There are different variations of gradient descent, including batch gradient descent, stochastic gradient descent, and mini-batch gradient descent, each with its own advantages and limitations.
	10. Efficient implementation of gradient descent is essential for achieving good performance in machine learning tasks. The choice of the learning rate and the number of iterations can significantly impact the performance of the algorithm.
	Types of Gradient Descent
	The choice of gradient descent algorithm depends on the problem at hand and the size of the dataset. Batch gradient descent is suitable for small datasets, while stochastic gradient descent is more suitable for large datasets. Mini-batch gradient desc...
	Batch Gradient Descent
	Batch gradient descent updates the model’s parameters using the gradient of the entire training set. It calculates the average gradient of the cost function for all the training examples and updates the parameters in the opposite direction. Batch grad...
	Stochastic Gradient Descent
	Stochastic gradient descent updates the model’s parameters using the gradient of one training example at a time. It randomly selects a training example, computes the gradient of the cost function for that example, and updates the parameters in the opp...
	Mini-Batch Gradient Descent
	Mini-batch gradient descent updates the model’s parameters using the gradient of a small subset of the training set, known as a mini-batch. It calculates the average gradient of the cost function for the mini-batch and updates the parameters in the op...
	Plotting the Gradient Descent Algorithm
	When we have a single parameter (theta), we can plot the dependent variable cost on the y-axis and theta on the x-axis. If there are two parameters, we can go with a 3-D plot, with cost on one axis and the two parameters (thetas) along the other two a...
	cost along z-axis and parameters(thetas) along x-axis and y-axis (source: Research gate)
	It can also be visualized by using Contours. This shows a 3-D plot in two dimensions with parameters along both axes and the response as a contour. The value of the response increases away from the center and has the same value along with the rings. T...
	Gradient descent using Contour Plot. (source: Coursera )
	Alpha – The Learning Rate
	We have the direction we want to move in, now we must decide the size of the step we must take.
	*It must be chosen carefully to end up with local minima.
	● If the learning rate is too high, we might OVERSHOOT the minima and keep bouncing, without reaching the minima
	● If the learning rate is too small, the training might turn out to be too long
	Source: Coursera
	1. a) Learning rate is optimal, model converges to the minimum
	2. b) Learning rate is too small, it takes more time but converges to the minimum
	3. c) Learning rate is higher than the optimal value, it overshoots but converges ( 1/C < η <2/C)
	4. d) Learning rate is very large, it overshoots and diverges, moves away from the minima, performance decreases on learning
	Source: researchgate
	Note: As the gradient decreases while moving towards the local minima, the size of the step decreases. So, the learning rate (alpha) can be constant over the optimization and need not be varied iteratively.
	Local Minima
	The cost function may consist of many minimum points. The gradient may settle on any one of the minima, which depends on the initial point (i.e initial parameters(theta)) and the learning rate. Therefore, the optimization may converge to different poi...
	Convergence of cost function with different starting points (Source: Gfycat )
	Code Implementation of Gradient Descent in Python
	Gradient Descent Algorithm
	Challenges of Gradient Descent
	While gradient descent is a powerful optimization algorithm, it can also present some challenges that can affect its performance. Some of these challenges include:
	1. Local Optima: Gradient descent can converge to local optima instead of the global optimum, especially if the cost function has multiple peaks and valleys.
	2. Learning Rate Selection: The choice of learning rate can significantly impact the performance of gradient descent. If the learning rate is too high, the algorithm may overshoot the minimum, and if it is too low, the algorithm may take too long to c...
	3. Overfitting: Gradient descent can overfit the training data if the model is too complex or the learning rate is too high. This can lead to poor generalization performance on new data.
	4. Convergence Rate: The convergence rate of gradient descent can be slow for large datasets or high-dimensional spaces, which can make the algorithm computationally expensive.
	5. Saddle Points: In high-dimensional spaces, the gradient of the cost function can have saddle points, which can cause gradient descent to get stuck in a plateau instead of converging to a minimum.
	To overcome these challenges, several variations of gradient descent have been developed, such as adaptive learning rate methods, momentum-based methods, and second-order methods. Additionally, choosing the right regularization method, model architect...
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