UNIT -1

What is a Cost Function?

It is a function that measures the performance of a model for any given data. Cost Function
quantifies the error between predicted values and expected values and presents it in the form of a
single real number.

After making a hypothesis with initial parameters, we calculate the Cost function. And with a
goal to reduce the cost function, we modify the parameters by using the Gradient descent
algorithm over the given data. Here’s the mathematical representation for it:

Hypothesis: he(x) = 0 + 012
Parameters: 0o, 64
Cost Function: J(60,61) = 5= > (he(a?) = y)

Goal: minimize J(6g, 6;)
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What is Gradient Descent?

Gradient descent is an optimization algorithm used in machine learning to minimize the cost
function by iteratively adjusting parameters in the direction of the negative gradient, aiming to
find the optimal set of parameters.

The cost function represents the discrepancy between the predicted output of the model and the
actual output. The goal of gradient descent is to find the set of parameters that minimizes this
discrepancy and improves the model’s performance.

The algorithm operates by calculating the gradient of the cost function, which indicates the
direction and magnitude of steepest ascent. However, since the objective is to minimize the cost
function, gradient descent moves in the opposite direction of the gradient, known as the negative
gradient direction.

By iteratively updating the model’s parameters in the negative gradient direction, gradient
descent gradually converges towards the optimal set of parameters that yields the lowest cost.


https://www.analyticsvidhya.com/blog/2021/02/cost-function-is-no-rocket-science/

The learning rate, a hyperparameter, determines the step size taken in each iteration, influencing
the speed and stability of convergence.

Gradient descent can be applied to various machine learning algorithms, including linear
regression, logistic regression, neural networks, and support vector machines. It provides a
general framework for optimizing models by iteratively refining their parameters based on the
cost function.

Example of Gradient Descent

Let’s say you are playing a game where the players are at the top of a mountain, and they are
asked to reach the lowest point of the mountain. Additionally, they are blindfolded. So, what
approach do you think would make you reach the lake?

Take a moment to think about this before you read on.

The best way is to observe the ground and find where the land descends. From that position, take
a step in the descending direction and iterate this process until we reach the lowest point.

Finding the lowest point in a hilly landscape. (Source: Fisseha Berhane)

Gradient descent is an iterative optimization algorithm for finding the local minimum of a
function.

To find the local minimum of a function using gradient descent, we must take steps proportional
to the negative of the gradient (move away from the gradient) of the function at the current point.
If we take steps proportional to the positive of the gradient (moving towards the gradient), we
will approach a local maximum of the function, and the procedure is called Gradient Ascent.

Gradient descent was originally proposed by CAUCHY in 1847. It is also known as steepest
descent.
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The goal of the gradient descent algorithm is to minimize the given function (say cost function).
To achieve this goal, it performs two steps iteratively:

1. Compute the gradient (slope), the first order derivative of the function at that point

2. Make a step (move) in the direction opposite to the gradient, opposite direction of
slope increase from the current point by alpha times the gradient at that point

Gradient descent algorithm

repeat until convergence {

0
93' .— 93' — Q%J(Qo, 91)

(for j =1 and 57 = 0)




Alpha is called Learning rate — a tuning parameter in the optimization process. It decides the
length of the steps.

How Does Gradient Descent Work?

1. Gradient descent is an optimization algorithm used to minimize the cost function of a
model.

2. The cost function measures how well the model fits the training data and is defined based
on the difference between the predicted and actual values.

3. The gradient of the cost function is the derivative with respect to the model’s parameters
and points in the direction of the steepest ascent.

4, The algorithm starts with an initial set of parameters and updates them in small steps to
minimize the cost function.

5. In each iteration of the algorithm, the gradient of the cost function with respect to each
parameter is computed.

6. The gradient tells us the direction of the steepest ascent, and by moving in the opposite
direction, we can find the direction of the steepest descent.

7. The size of the step is controlled by the learning rate, which determines how quickly the
algorithm moves towards the minimum.

8. The process is repeated until the cost function converges to a minimum, indicating that
the model has reached the optimal set of parameters.

9. There are different variations of gradient descent, including batch gradient descent,

stochastic gradient descent, and mini-batch gradient descent, each with its own advantages and
limitations.

10. Efficient implementation of gradient descent is essential for achieving good performance
in machine learning tasks. The choice of the learning rate and the number of iterations can
significantly impact the performance of the algorithm.

Types of Gradient Descent

The choice of gradient descent algorithm depends on the problem at hand and the size of the
dataset. Batch gradient descent is suitable for small datasets, while stochastic gradient descent is
more suitable for large datasets. Mini-batch gradient descent is a good compromise between the
two and is often used in practice.

Batch Gradient Descent

Batch gradient descent updates the model’s parameters using the gradient of the entire training
set. It calculates the average gradient of the cost function for all the training examples and
updates the parameters in the opposite direction. Batch gradient descent guarantees convergence
to the global minimum, but can be computationally expensive and slow for large datasets.

Stochastic Gradient Descent



Stochastic gradient descent updates the model’s parameters using the gradient of one training
example at a time. It randomly selects a training example, computes the gradient of the cost
function for that example, and updates the parameters in the opposite direction. Stochastic
gradient descent is computationally efficient and can converge faster than batch gradient descent.
However, it can be noisy and may not converge to the global minimum.

Mini-Batch Gradient Descent

Mini-batch gradient descent updates the model’s parameters using the gradient of a small subset
of the training set, known as a mini-batch. It calculates the average gradient of the cost function
for the mini-batch and updates the parameters in the opposite direction. Mini-batch gradient
descent combines the advantages of both batch and stochastic gradient descent, and is the most
commonly used method in practice. It is computationally efficient and less noisy than stochastic
gradient descent, while still being able to converge to a good solution.

Plotting the Gradient Descent Algorithm

When we have a single parameter (theta), we can plot the dependent variable cost on the y-axis
and theta on the x-axis. If there are two parameters, we can go with a 3-D plot, with cost on one
axis and the two parameters (thetas) along the other two axes.

cost along z-axis and parameters(thetas) along x-axis and y-axis (source: Research gate)

It can also be visualized by using Contours. This shows a 3-D plot in two dimensions with
parameters along both axes and the response as a contour. The value of the response increases
away from the center and has the same value along with the rings. The response is directly
proportional to the distance of a point from the center (along a direction).
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Gradient descent using Contour Plot. (source: Coursera )

Alpha — The Learning Rate

We have the direction we want to move in, now we must decide the size of the step we must
take.

*It must be chosen carefully to end up with local minima.

o If the learning rate is too high, we might OVERSHOOQOT the minima and keep bouncing,
without reaching the minima

o If the learning rate is too small, the training might turn out to be too long

1 L [ 3 [
] o i i i -
aed oL 1_..2 Iy
i g W © L . -
L] ."1 . Divergense
- rl
1 - L
1 . -
.’ - -H. - T - -
W W W ¥

i®} ihl eh )

Source: Coursera

1. a) Learning rate is optimal, model converges to the minimum
2. b) Learning rate is too small, it takes more time but converges to the minimum



3. c¢) Learning rate is higher than the optimal value, it overshoots but converges ( 1/C <n

<2/C)
4, d) Learning rate is very large, it overshoots and diverges, moves away from the minima,

performance decreases on learning

low learning rate

high learning rate

\

epoch

good learning rate

\

Source: researchgate

Note: As the gradient decreases while moving towards the local minima, the size of the step
decreases. So, the learning rate (alpha) can be constant over the optimization and need not be

varied iteratively.

Local Minima

The cost function may consist of many minimum points. The gradient may settle on any one of
the minima, which depends on the initial point (i.e initial parameters(theta)) and the learning
rate. Therefore, the optimization may converge to different points with different starting points

and learning rate.



Convergence of cost function with different starting points (Source: Gfycat )

Code Implementation of Gradient Descent in Python

def train(X, y, W, B, alpha, max iters):

aw
dB 0
m = X.shape[0]
for i in range(max iters):
dw = 0
dB = 0
for j in range(m):

]
# e

=

# Resetting the a um

4 + oo =
* 1. LLETal

3. Ug e dW b
W - alpha * (dw / m)
B - alpha * (dB / m)

w
B

return W, B # Return the updated weights




Gradient Descent Algorithm

Challenges of Gradient Descent

While gradient descent is a powerful optimization algorithm, it can also present some challenges
that can affect its performance. Some of these challenges include:

1. Local Optima: Gradient descent can converge to local optima instead of the global
optimum, especially if the cost function has multiple peaks and valleys.
2. Learning Rate Selection: The choice of learning rate can significantly impact the

performance of gradient descent. If the learning rate is too high, the algorithm may overshoot the
minimum, and if it is too low, the algorithm may take too long to converge.

3. Overfitting: Gradient descent can overfit the training data if the model is too complex or
the learning rate is too high. This can lead to poor generalization performance on new data.

4, Convergence Rate: The convergence rate of gradient descent can be slow for large
datasets or high-dimensional spaces, which can make the algorithm computationally expensive.
5. Saddle Points: In high-dimensional spaces, the gradient of the cost function can have
saddle points, which can cause gradient descent to get stuck in a plateau instead of converging to
a minimum.,

To overcome these challenges, several variations of gradient descent have been developed, such
as adaptive learning rate methods, momentum-based methods, and second-order methods.
Additionally, choosing the right regularization method, model architecture, and hyperparameters
can also help improve the performance of gradient descent.
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UNIT I

Associative Memory and
Unsupervised Learning
Networks

Syllabus

Training Algorithms for Pattern Association-Autoassociative Memory Network-Heteroassociative
Memory Network-Bidirectional Associative Memory (BAM) - Hopfield Networks - lterative
Autoassociative Memory Networks-Temporal Associative Menmory. Network - Fixed Weight
Competitive Nets - Kohonen Self - Organizing Feature Maps - Learning Vector Quantization -
Counter propagation Networks - Adaptive Resonance Theory Network.
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widely used in distributed memory modeling. Itis one of the m

Its architecture consists of two sets of units. the input units and the output units. Fachinpy
unit connects to each output unit via weightad ©

allowed from input units to output units.

onnections. The connections are only

on a unit u, in the output layer is determined by the
1

e The effect of a unit u, in the input layer : ‘
icht of the connection from u, O U, The

product of the activation 3, of u, and the we
activation of a unit u, in the output layer is given by : SUM(w;, x a)

A pattern association can be trained to respond with a certain output pattern W hen presented
tion weights can be adjusted in order to change the

with an input pattern. The connec
nges it weights

input output behavior. The learning rule is what specifies now a network cha
for a given input output association.

The most commonly used learning rules with pattern associators are Hebb rule and the delta

rule.

Hebb Rule

o Hebb rule is the simplest and most common method of determining weights for an
associative memory neural net. It can be used with patterns are represented as either binary
or bipolar vectors

e Hebb’s Law states that if neuron i is near enough to excite neuron j and repeatedly
participates in its activation, the synaptic connection between these two neurons is
strengthened and neuron j becomes more sensitive to stimuli from neuron i.

e According to Hebb rule, weight vector is found to increase proportionately to the product of
the input and learning signal.

e Hebb’s Law can be represent in the form two rules :

1. If two neurons on either side of a connection are activated synchronously. then the
weight of that connection is increased. .

2. If two neurons on either side of a connection are activated asynchronously, then the
weight of that connection is decreased.

e Fig. 2.1.1 shows Hebbian learning in a neﬁral network.
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Fig. 2.1.1 Hebbian learning in a neural network

Using Hebb’s Law, we can express the adjustment applied to the weight w; at iteration p in
the following form :

AW, (p) = Fly(p), xp)],
where F[y,(p), x(p)] is a function of both postsynaptic and presynaptic activitics.

As a special case, we can represent Hebb’s law
AW,(p) = ay,(p) x{(p)

where o is the learning rate parameter.

This equation is referred to as the activity product rule. It shows how a change in the weight

of the synaptic connection between a pair of neurons is related to a product of the incoming

and outgoing signals.
Hebbian learning implies that weights can only increase. In other words, Hebb’s Law allows

the strength of a connection to increase, but it does not provide a means to decrease the

strength. Thus, repeated application of the input signal may drive the weight w; into
saturation.

o The w; stands for the weight of the connection from neuron j to neuron i. Fig. 2.1.2 shows

Two connected neurons (W).

W,
Oie®
W (new) = W,(old), xy

Fig. 2.1.2 Two connected neurons

¢ To resolve this problem, we might impose a limit on the growth of synaptic weights. It can

be done by introducing a non-lincar forgetting factor into Hebb's Law.
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o Hebbian learning requires no other information than the activities, such as labels or cry,
signals: it is an unsupervised learning method. Hebbian learning is not a concrete leamip,
rule, it is a postulate on the fundamental principle of biological learning.

o Forgetting factor (@) specifies the weight decay in a single learning cycle. It usually falls iy

the interval between 0 and 1. If the forgetting factor is 0, the neural network is capable only
s a result, these weights grow towards infinity,

of strengthening its synaptic weights, and a
k remembers very little of

On the other hand, if the forgetting factor is close to |, the networ
what it learns. Therefore, a rather small forgetting factor should be chosen, typi
0.01 and 0.1, to allow only a little ‘forgetting’ while limiting the weight growth.

cally between

e Fig. 2.1.3 shows flow chart of Hebb training algorithm.

Start

Activate output

Initialize weights y=t

i

Weight update
w(new) = w (old) + xy

/

Bias update
b(new) = b(old) +y

Activate input

il

Fig. 2.1.3 Flow chart of Hebb training algorithm

e Generalized Hebbian learning algorithm :
1. Fnitialization : Set initial synaptic weights and thresholds to small random values, say

an interval [0, 1]. Also assign small positive values to the learning rate parameter u and

forgetting factor @.
2. Activation : Compute the ncuron output at iteration p

y(p) = Z x(p) w,(p) -0,

where n is the number of neuron inputs, and 0, is the threshold value of neuron ).

TECHNICAL PUBLICATIONS® - an yp-thrust for knowledge
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3, Learning : Update the weights in the network
W (p :
D = w (p) Aw,(p)

where Aw, (p) is the weight correction at iteration p.

4. lteration : Increase iterati _ :
. ¢ iteration p by one, go back to Step 2 and continue until the synaptic
weights reach their steady-state values
o« Hebb rule can be used for pattern associati  adh A

l ed for pattern association, pattern categorization, pattern classification

and over a range of other arcas.

m Delta Rule

An important generalization of the perceptron training algorithm was presented by Widrow
and HofT as the least mean square learning procedure also known as the delta rule.

o The learning rule was applied to the “adaptive linear element” also named Adaline.

o The perceptron learning rule uses the output of the threshold function for learning. The delta
rule uses the net output without further mapping into output values ~I'or+1.

o Fi
-1 +1 +1

l ] 1!

2.1.4 shows adaline.

U
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Fig. 2.1.4 Adaline

denoted by w,, where i =0, 1, 2,.....n, and input and output

o If the input conductances arc
then the output of the central block is defined to be :

signals by x, and y, respectively,

n
y = Yowx+0
i=1
Where 0 =W,

vice consists of a set of controllable resistors

used by the input voltage signals.

* In a simple physical implementation this de

connected to a circuit which can sum up currents ¢a
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e Todecrcase b by gradient descent, the update formula for w, on the p" put-output pattern
(AY
AW on, o
e The delta rule tmes o mummise squared errors, 1t 1s also referred to as the least mean square
learning procedure or Widrow -HofT lcarning rule.
e Features of the delta rule are as follows
L. Sumphcity

2. Distmbuted leaming @ Leaming 1s not rehant on central control of the network.

Lad

. Onhine learming @ Weights are updated after presentation of each pattern.

Associative Memory Network
® Orxofthe pnmary functions of the brain is associative memory. Leaming can be considered
as a provess of formung associations between related patterns. The associative memory s
composad of a cluster of units which represent a simple model of a real biological neuron.
® An associative memory, also known as Content-Addressable Memory (CAM) can be
searchad for a value n a single memory cyele rather than using a software loop.

® Associztive memories can be implemented using networks with or without feedback. Such
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B, = (-0
where, {, © Target output

Actual output of the Adaline
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e The derivation of E, with respect to cach weight w, 1s
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dw,

p
-2 (, u!‘] X,

" . . - . th - Atte
* To decrease I by gradient descent, the update formula for w, on the p " input-output patten

N
Aw, = (L up) X,
The delta rulé tries to minimize squared errors, it is also referred to as the least mean square
learning procedure or Widrow-Hoff learning rule.
e Features of the delta rule are as follows :
[. Simplicity
2 Distributed leaming : Learning is not reliant on central control of the network.

3. Online learning : Weights are updated after presentation of cach pattern.

) Associative Memory Network
o One of the primary functions of the brain is associative memory. Learning can be considered
as a process of forming associations between related patterns. The associative memory 18
composed of a cluster of units which represent a simple model of a real biological m".n”l_
 An associative memory, also known as Content-Addressable Memory (CAM) can be
searched for a value in a single memory cycle rather than using a software loop.

[ ] soc1ativ 5 s . :
Associative memories can be implemented using networks with or without feedback Suh
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octative neural networks are . " . -
assoctatl Al networks are used 1o associate one set of vectors with another set of
yectors, say mput and output patterns,

‘he aim of an associative me : : R
The aim oL an assoctative memory is, 1o produce the associated output pattern whenever one
of the mput patterns is applied to the neur:

il network. The input pattern may be applied to the
network either as input or ag initial st

ate and the output pattern is observed at the outputs of
some Neurons constituting the network

Associative memorics bd(‘“g to class of neural network that learn according to a certain
recording algorithm. They require inform

ation a priori and their connectivity matrices most
often need to be formed in advance. W

riting into memory produces changes in the neural
interconnections. Reading of the stored info from memory named recall, 1s a transformation
of input signals by the network.

All memory information is spatially distributed throughout. the network. Associative
memory enables a parallel search within a stored data, The purpose of search is to output one
or all stored items that matches the search argument and retrieve it entirely or partially.

The Fig. 2.2.1 shows a block diagram of an associative memory.

-V,
; Associative
memory

Fig. 2.2.1 Block diagram of an associative memory
In the initialization phase of the associative memory no information is stored; ? because the

information is represented in the w weights they are all set to zero.

The advantage of neural associative memories over other pattern storage algorithms like
(=] bl

lookup tables of hash codes is that the memory access can be fault tolerant with respect to

variation of the input pattern.

In associative memories many associations can be stored at the same time. There are
different schemes of superposition of the memory traces formed by the different
associations. The superposition can be simple linear addition of the synaptic changes

required for each association (like in the Hopfield model) or nonlinear.
The performance of neural associative memories is usually measured by a quantity called
information capacity, that is, the information content that can be learned and retrieved,

divided by the number of synapses required.
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e An associative memory is a €O
representations to specific output
patterns (X, Y) such that when on¢ is encountere

representations. It is
d, the other can be recalled.

e Associative network memory can be static or dynamic.

r an input has been applied in one fy, "

e Static : networks recall an output response afte

_ : : .d instantancous.
forward pass and theoretically without delay. They were termed instantanco

e Dynamic : memory networks produce recall as a result of output/input feedback Interactig,

which requires time.
e There are two classes of associative memory : auto-associative and hetero-assocative.
o Whether auto- or hetero-associative, the net can associate not only the exact pattern pyjr

used in training, but is also able to obtain associations if the input is similar to one on whig

it has been trained.

M Auto-associative Memory

e Auto-associative networks are a special subset of the h

each vector is associated with itself, i.e.y' = x' for i=1,.

etero-associative networks, in which

.., m. The function of such networks

1s to correct noisy input vectors.
e Fig. 2.2.2 shows auto-associative memory.
Auto-associative memories are content based memories which can recall a stored sequence
when they are presented with a fragment or a noisy version of it. They are very effective in
de-noising the input or removing interference from the input which makes them a promising
first step in solving the cocktail party problem.
The simplest version of auto-associative memory is linear associator which is a two-layer

feed-forward fully connected neural network where the output is constructed in a single

feed-forward computation.

! £ D) "

Autoassociative [

network
XI ——J x|
n 0 / n

Fig. 2.2.2 Auto-associative memory

o Artificial neural networks can be used as associative memories. One of the simplest artificial
neural associative memory is the linear associator. The Hopfield model and Bidirectional
Associative Memory (BAM) models are some of the other popular artificial neural netw ork

models used as associative memories,
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@ Hetero-associative Memory Network

Hetem-associative networks “m” 1 i
X o Map “m” input vectors X', X" ,....
moutput vectors y | y*

- X" in n-dimensional space to
»Y 1 k-dimensional space, so that X' y.

Bupla oy ‘ i
X, L X] <= e = =¥ 1 3

s I H ; then X Y . This should be achieved by the learning algorithm, but
becomes very hard when the number m of vectors to be learned is too high.

o Fig. 2.2.3 shows block diagram of hetero-associative network.

X ' Yy
Heteroassociative ———

" network i

X, ) Yk

Fig. 2.2.3 Auto-associative memory

o Fig. 2.2.4 shows the structure of a hetero-associative network without feedback.

¥4
X4
Xo
xn
Yk

Fig. 2.2.4 Hetero-associative network without feedback

Fig. 2.2.5 Hetero-associative network without feedback
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The Hopfield Network

o The Hopfield model 13 @ single laye
d with appropriate welghts

red recurrent network, Like the associative rcr,

f/
su |||y iujtin“-{c "lF.lCil(l of l'!"lflz traited
usui .

o Hopficld Neural Network (HNN) 14
feedbacks, Fig. 2.2.6 shows Hopficld network of three unp.

a model of auto-associative memory, 1is a single |,

neural network with

Hopfield network 18 created by supplying input data vectors, of paticin e,

corresponding to the different classes. These patterns are called class patterns

Uit 3

Fig. 2.2.6 Hopfield natwork of three units

o Hopficld model consists of a single layer of processing elements where cach ur
connected to every other unit in the network other than itself.

e The output of each neuron is a binary number i § 1,1}, The output vector 15 the
vector, Starting from an initial state (given as the input vector), the state of the netv. o
changes from one to another like an automaton. If the state converges, the point to whic’
converges is called the attractor.

o In its simplest form, the output function is the sign function, which yields | for argur -
20 and -1 otherwise.

¢ The connection weight matrix W of this type of network is square and symmetric. The .
in the Hopficld model act as both input and output umits,

e A Hopfield network consists of “n” totally coupled units, Each unit 1s connected to all o+ -
units except itself. The network is symmetric because the weight w, for the connec
between unit i and unit j is equal to the weight w, of the connection from unit j 1o unit |
absence of a connection from cach unit to itself avoids a permanent feedback of its our -

value.
* Hopficld networks are typically used for classification problems with binary pattern vect r
* Hopfield model is classified into two categories
1. Discrete Hopfield Model
2. Continuous Hopficld Model
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o In both discrete and conti
ikl i tinuous Hopfield network weights trained in a one-shot fashion and
no o crementally as was done in case of Perceptron and MLP.
In the discrete Hopfi . 3
B fp ield model, the units use a slightly modified bipolar output function
ates of t its. i :
' he units, i.e., the output of the units remain the same if the current state
is equal to some threshold value
The continuous o \
@ : Hopfield model is just a generalization of the discrete case. Here, the units
use a continuo : i
; H us output function such as the sigmoid or hyperbolic tangent function. In the
continuous : :
opfield model, each unit has an associated capacitor C; and resistance & that

model the capacita : :
pacitance and resistance of real neuron's cell membrane, respectively.

m Bidirectional Associative Memory (BAM)

BAM consists of two layers, x and y. Signals are sent back and forth between both layers

]
y vectors no longer

until an equilibrium is reached. Equilibrium is reached if the x and
change. Given an x vector the BAM is able to produce the y veetor and vice versa.
BAM consists of bi-directional edges so that information can flow in either direction. Since

the BAM network has bidirectional edges, propagation moves in both directions, first from
one layer to another, and then back to the first layer. Propagation continues until the nodes
are no longer changing values.

e Fig. 2.2.7 shows BAM network.

e Since the BAM also uses the traditional Hebb's learning rule to build the connection weight

matrix to store the associated pattern pairs, it too has a severely low memory capacity.

) Ym

Y1

Second layer

First layer

X2
Fig. 2.2.7 BAM network
e BAM can be classified into two categorics :

BAM : The network propagales an input pattern X to the Y layer where the

1. Discrete

units in the Y layer will compute their net input.
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gmoid or hypcrbulic tangent outpyt fung,
“Hij

2. Continuous BAM : The units use the si
¢ the units in the v =
i 51-;:.‘

The units in the X layer have an extra extern
., man

al input i, whil
dJ = ]‘2| T |

have an extra external input J, fori=1, 2, o
n of the net in
put ke ih

These extra external inputs lead to a modification in the computatio

units.

EFX] Difference Between Auto-associative Memory and

Hetero-associative Memory
I I S
. \\‘\
Auto-associative memory Hetero-associative memory
]
utput vectors s and ¢ are

The inputs and output vectors s and t arc the The inputs and ©
same different.

—

fferent in characye,

Recalls a memory of the same modality as ‘Recalls a memory that is di
the one that evoked it from the input

A particular smell or sound, for example, migp

A picture of a favorite object might evoke
mental image of that object in vivid detail evoke a visual memory of some past event
e |

An auto-associative memory retrieves the Hetero-associative memory retrieves the storeg
same pattern ' pattern

Example : 1. Space transforms : Fouricr,

Example : color correction, color constancy
2. Dimensionality reduction : PCA

E] Kohonen Self-Organizing Feature Maps
en self organizing networks are also called Kohonen features maps or topolog

e Kohon
maps are used to solve competition based network paradigm for data clusterng

preserving
The Kohonen model provides a topological mapping. It places a fixed number of inp

patterns from the input layer into a higher-dimensional output or Kohonen layecr.
Training in the Kohonen network begins with the winner's neighbourhood of a fairly lar
size. Then, as training proceeds, the neighbourhood size gradually decreases
Fig. 2.3.1 i 17

g shows a simple Kohonen self organizing network with 2 inputs and 49 ouft

The learni is Simi
ming feature map is similar to that of competitive learning networks.
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Output units T 6 0 O'OE

NB(t=1)
NB(t=0)

(a) (b)

Fig. 2.3.1 Simple Kohonen self organizing network

A similarity measure is selected and the winning unit is considered to be the one with the
largest activation. For this Kohonen features maps all the weights in a neighborhood
around the winning units are also updated. The neighborhood's size generally decreases
slowly with each iteration.

Step for how to train a Kohonen self organizing network is as follows :

For n-dimensional input space and m output neurons :

l.

2
3.

Choose random weight vector w, for neuroni,i=1, ..., m

Choose random input x

Determine winner neuron k : | | wy, — x | | = min, | | w; — x | | (Euclidean distance)

Update all weight vectors of all neurons i in the neighborhood of neuron
(k:w,:=w;+n-@(ik)- (x-w))(w, is shifted towards x)
If convergence criterion met, STOP. Otherwise, narrow neighborhood function and

learning parameter 1 and go to (2).

Competitive learning in the Kohonen network

e T )

To illustrate competitive learning, consider the Kohonen network with 100 neurons arranged
in the form of a two-dimensional lattice with 10 rows and 10 columns. The network is
required to classify two-dimensional input vectors - each neuron in the network should

respond only to the input vectors occurring in its region.

The network is trained with 1000 two-dimensional input vectors generated randomly in a

square region in the interval between -1 and +1. The learning rate parameter a is equal to
0.1.
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m Learning Vector Quantization

Learning Vector Quantization (LVQ) is adaptive data classification method. It is based on
training data with desired class information,

LVQ uses unsupervised data clustering techniques to preprocesses the data set and obtain
cluster centers.

Fig. 2.4.1 shows the network representation of LVQ.

Here input dimension is 2 and the input space is divided into six clusters. The first two
clusters belong to class 1, while other four clusters belong to class 2.
THE LVQ learning algorithm involves two steps :

1. An unsupervised learning data clustering method is used to locate several cluster centers

without using the class information.

. The class information is used to fine tune the cluster centers to minimize the number of
misclassified cases.

The number of cluster can either be specified a priori or determined via a cluster technique
capable of adaptively adding new clusters when necessary. Once the clusters are obtained,

their classes must be labeled before moving to second step. Such labeling is a achieved by
voting method.

* Qutput units

Fig. 2.4.1LVQ

r Learning method :

The weight vector (w) that is closest to the input vector (x) must be found. If x belongs to
the same class. we move w towards x; otherwise we move w away from the input vector x.
=« Step 1 : Initialize the cluster centers by a clustering method.

= Step 2 : Label each cluster by the voting method.
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ining input vecto

updatc Wy by

is a minimum-
Step4: If x and Wy
A Wk == N (x = wk)

belongs t0 the same class,

Otherwise update W by

AW, = -H(X*Wk)
umber of iterations is reached, sto

. Otherwi
. Step 5: If the maximum I P IS€ retury
to step 3.

d network. [t consists of an outstar network ang

1986 by Robert
tworks based on
be used (O comp

Hecht-Nielsen.
a combination of inpy

ress data, to approximate

ation network is a hybri

The counter propag
developed in

r network. It was
n networks multilayer ne€
his network can

competitive filte

Counter propagatio
clustering and output layers. T
functions or to associate patterns. _
CPN is an unsupervised winner-take-all co
The hidden layer is Kohonen network with unsup
Grossberg (outstar) layer fully connected to the hidden

the Widrow-Hoff rule.

The counter propagatio
association.

tive learning network.
ervised learning and the outp
layer. The output layer is trained by

mpeti
ut layer is a

n network can be applied in a data compression approximation

functions or pattern
Three major components
1. Instar : Hidden node with inp
shares its general structure and processing
elements

2. Competitive layer :
3. Qutstar : A structure

ut weights. The instar is a single processing element that

functions with many other processing

Hidden layer composed of instars

s training include two stages :

Counter propagation network
are formed using dot product metric or Euclide

an

1. Input vectors are clustered. Clusters

norm metrics.

2. Weights from cluster units to outputs units are made to produce the desired response.

Counter Propagation Operation :

1. Present input to network
2. Calculate output of all neurons in Kohonen layer
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3. Determine winner (neuron with maximum output)

4, Sctoutput of winner (o 1 (others (o 0)

5. Calculate output vector
Counter propagation networks are of two types :
1. Full counter propagation

2. Forward counter propagation

1. Full counter-propagation network (CPN).

The Full CPN allows to produce a correct output even when it is given an input vector that
is partially incomplete or incorrect.

Full counter-propagation was developed to provide an efficient method of representing a
large number of vector pairs, x : y by adaptively constructing a lookup table.

It produces an approximation x* : y* based on input of an x veetor or input of a y vector
only, or input of an x:y pair, possibly with some distorted or missing elements in either or
both vectors.

In first phase, the training vector pairs are used to form clusters using either dot product or
euclidean distance. If dot product is used, normalization is a must.

This phase of training is called as In star modeled training. The active units here are the
units in the x-input, z-cluster and y-input layers. The winning unit uses standard Kohonen
learning rule for its weigh updation.

During second phase, the weights are adjusted between the cluster units and output units.

In this phase, we can find only the J unit remaining active in the cluster layer.

The weights from the winning cluster unit J to the output units are adjusted, so that vector of
activation of units in the y output layer, y*, is approximation of input vector y; and x* is an
approximeition of input vector x.

The architecture of CPN resembles an instar and outstar model.

The model which connects the input layers to the hidden layer is called Instar model and the
model which connects the hidden layer to the output layer is called Outstar model.

The weights are updated in both the Instar (in first phase) and Outstar model (second
phase). The network is fully interconnected network

2. Forward Counter Propagation Network :

It may be used if the mapping from x to y is well defined, but the mapping from y to x is not.
In this network, after competition only one unit in that layer will be active and send a signal

to the output layer.
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ounter propagation networks :

Possible drawback of ¢
gation network has the same d

1. Training a counter propa ifficulty associated with train,'ng

a Kohonen network. 4 .
ation n
2. Counter propagation networks tend to be larger than back propagation networks, If ;

certain number of mappings are o be learned, the middle layer must have that Many

numbers of neurons.

X Adaptive Resonance Theory Network

phen Grossberg (Boston University) developed the Adaptiy,

Gail Carpenter and Ste
learned knowledge whjl.

Resonance learning model. How can a system retain its previously

incorporating new information.
Adaptive resonance architectures are artificial neural networks that are capable of stabe
categorization of an arbitrary sequence of unlabeled input patterns in real time. These

architectures are capable of continuous training with non-stationary inputs.

Some models of Adaptive Resonance Theory are :

1. ARTI - Discrete input.

2. ART2 - Continuous input.
3. ARTMAP - Using two input vectors, transforms the unsupervised ART model into

supervised one.
Various others : Fuzzy ART, Fuzzy ARTMAP (FARTMAP), etc...
The primary intuition behind the ART model is that object identification and recognition
generaily oceur as a result of the interaction of 'top-down' observer expectations with
'bottom-up' sensory information. ‘
The basic ART system is an unsupervised learning model. It typically consists of 2
comparison field and a recognition field composed of neurons, a vigilance parameter, and a
reset module. However, ART networks are able to grow additional neurons if a new input
cannot be categorized appropriately with the existing neurons.
ART networks tackle the stability-plasticity dilemma :
1. Plasticity : They can always adapt to unknown inputs if the given input cannot b

classified by existing clusters.
2. Stability : Existing clusters are not deleted by the introduction of new inputs.

3. Problem : Clusters are of fixed size, depending on p.

Fig. 2.6.1 shows ART-1 Network.

|
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RT-1 networks, which . : ;
. A ke T rf.lccwc binary input vectors. Bottom-up weights are used to
dctejl p h— ayer candidates that may best match the current input.
op-down weights re reh
ol ;s present the “prototype” for the cluster defined by each output neuron:

A close match between i ' :
N input and prototype is necessary for categorizing the input.

Output layer

Input layer

Fig. 2.6.1 ART 1 network

o Finding this match can require multiple signal exchanges between the two layers in both

directions until “resonance” is established or a new neuron is added.

o The basic ART model, ARTI, is comprised of the following components :
1. The short term memory layer : F1 - Short term memory.
2. The recognition layer : F2 - Contains the long term memory of the system.

3. Vigilance Parameter : p - A parameter that controls the generality of the memory. Larger

p means more detailed memories, smaller p'produces more general memories.

Types of ART :
Type Remarks

ART | It is the simplest variety of ART networks, accepting only binary inputs.

ART2 Extends network capabilities to support continuous inputs.

m 3 ART 3 builds on ART-2 by simulating rudimentary neurotransmitter
regulation of synaptic activity by incorporating simulated sodium (Na+t)

: and calcium (Ca2+) ion concentrations into the system’s equations, which
results in a more physiologically realistic means of partially inhibiting
categories that trigger mismatch resets.

Fuzzy ART implements fuzzy logic into ART’s pattern recognition, thus

enhancing gencralizabi]ity
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o known as Predictive ART, combines two slightly mogip
ed learning structure where the g leg |
d unit takes the correct outp,, . fig
ible adjustment of the Vil a
the correct classification,

ARTMAP It is als
ART-1 or ART-2 units into a supervis

unit takes the input data and the secon
then used to make the minimum poss

parameter in the first unit in order to make °e -'

Fuzzy ARTMAP is merely ARTMAP using fuzzy ART units, > TeSulting ;.
a corresponding increase in efficiency.
—, |

A

produce the correct weights 4y,

Two Marks Questions with Answers

Q.1 Whatis recall ?
Ans. : If the input vectors are uncorrelated, the Hebb rule will
the response of the net when tested with one of the training vectors will be perfect recall

Q.2 Explain learning vector quantization.
Ans. : LVQ is adaptive data classification method. It is based on training data with desired clag;

information. LVQ uses unsupervised data clustering techniques to preprocesses the data set ap( |

obtain cluster centers.

Q.3 What is meant by associative memory 7
Ans. : An associative memory can be considered as a2 memory unit whose stored data can be |
identified for access by the content of the data itself rather than by an address or memory
location. Associative memory is often referred to as Content Addressable Memory (CAM).

Q.4 Define auto associative memory.
Ans. : This is a single layer neural network in which the input training vector and the output
target vectors are the same. The weights are determined so that the network stores a set of

patterns. If vector “t” is the same as ™ s”, the net is auto-associative.

Q.5 What is Hebbian learning ?

Ans. : Hebb rule is the simplest and most common method of determining weights for an

associative memory neural net. It can be used with patterns are represented as cither binary or

bipolar vectors.

Q.6 What is Bidirectional Associative Memory (BAM) 7

Ans. : Bidirectional associative memory first proposed by Bart Kosko, 1s a hetero-associative
network. It associates patterns from one set, set A, to patterns from another set, set B and vice
versa. Like a Hopfield network, the BAM can generalize and also produce correct outputs |

despite corrupted or incomplete inputs.
4_—!-"'-——/

y
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Q7 Listthe problems of BAM network.
Ans. .

| Storage capacity of the BAM ations to be stored in the

Fhe maximum number of assoc
”\h1 should not exceed the number of neurons m the smaller I.ifgt‘f

2. Incorrect convergence © The BAM may not always produce the closest association
Q8 Whatls content-addressable memory ?
Ans. :
o A content-addressable memory 15 4 type of memory that allows for the recall of data based
on the degree of similanty between the mput pattern and the patterns stored immemory
o It refers to a memory orgamization m which the memory 1s accessedhby its content as
opposed to an explicit address like in the traditional computer memory sy stem
o Therefore, this type of memory allows the recall of nformation based on partial
knowledge of its contents
{ Q.9 What are the delta rule for pattern association ?
Ans. :
o When the input vectors are hincarly independent, the delta rule produces exact solutions
¢ Whether the input vectors are hin¢arly independent.or not, the delta rule produces a least
squares solution, 1.¢., it optimizes for the lowest sum of least squared errors.
Q.10 What is continuous BAM ?
Ans. : Continuous BAM ftransforms input smoothly and continuously into output in the range
[0, 1] using the logistic sigmoid function as the activation function for all units.
Q.11 What are the delta rule for pattern association ?
Ans. :
¢ When the input vectors are linearly independent, the delta rule produces exact solutions.

¢ Whether the input vectors are linearly independent or not, the delta rule produces a least

squares solution, 1.e., it optimizes for the lowest sum of least squared errors.
Q.12 Which are the rules used in Hebb's law ?
Ans. : Rules :
1. If two neurons on either side of a connection are activated synchronously, then the

weight of that connection is increased.

2. If two neurons on either side of a connection are activated asynchronously, then the

weight of that connection is decreased.

--..._________________
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nter propagatlon network ?

on a combination of ipy,

ess data, to APProximyt,

Q.13 What do you mean cou
Ans. : Counter propagation netw
clustering and output layers. This

functions or to associate patterns.

orks multilayer networks based

network can be used to compr

Q.14 What is Hopfield model ?
Ans. : The Hopfield model is a single-layered recurrent network. Like the associative memory,

it is usually initialized with appropriate weights instead of being trained.

Q.15 Define Self-Organizing Map.
Ans. : The Self-Organizing Map is one of the most
the category of competitive learning networks.

unsupervised learning, which means that no human inte
and that little needs to be known about the characteristics of the input data.

popular neural network models. It belongs 1o
The Self-Organizing Map is based oy
rvention is needed during the learning

Q.16 What is principle goal of the self-organizing map ?

Ans. : The principal goal of the Self-Organizing Map (SOM) is to transform an incoming signal

pattern of arbitrary dimension into a one - or two-dimensional discrete map and to perform this

transformation adaptively in a topologically ordered fashion.
Q.17 List the stages of the SOM algorithm.

Ans. :
Initialization - Choose random values for the initial weight vectors wj.

. Sampling - Draw a sample training input vector X from the input space.
3. Matching - Find the winning neuron I(x) with weight vector closest to input vector.

Aw;; = N(1) Tjro(t) (Xi — Wy

4. Updating - Apply the weight update equation
5 Continuation - Keep returning to step 2 until the feature map stops changing.

Q.18 Explain an essential ingredients and parameters of the SOM algorithm.

Ans. : An essential ingredients and parameters of the SOM algorithm are as follows :

|, Continuous input space of activation patterns that are generated in accordance with a

certain probability distribution;
2. Topology of the network in the form of a lattice of neurons, which defines a disc;‘ete

output space;
3. Time - varying neighborhood function hj, i(x)(n) that is defined around a winning

neuron i(x);
4. Learning - rate parameter that starts at an initial value and then decreases gradually with

time, but never goes to zero.
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Q.20 List the possible drawback of counter-propagation networks.

Ans. :

Trammng a co TN . . .
o Traming a counter-propagation network has the same difticulty associated with tramimg a

Kohonen network
o Counter-propagation networks tend 1o be larger than backpropagation. networks -
certain number of mappings are 1o be leamed, the middle layer must lave that many
pnumber of neurons,

Q.21 How forward-only differs form full counter-propagation nets ?

Ans. :
o In full counter-propagation. only the x vectors 1o form the Clusters on the Kohonen units
during the first stage of traming.
o The original presentation of forward-only counter-propagation used the Fuclidean
distance between the input vector and the weight veetor for the Kohonen umit
Q.22 What is forward only counter-propagation ?
Ans.:
o Isasimplified version of the full counterpropagation
e Arc intended to approximate v = f{x) function that is not necessarily invertible.
o It may be used if the mapping from x to y is well defined, but the mapping from y to x 1s
not.
Q.23 Define plasticity.
Ans. : The ability of a net to respond to learn a new pattern equally well at any stage of learning
is called plasticity.
Q.24 List the components of ART1.
Ans. : Components are as follows :
l. The short term memory layer (F1)
2. The recognition layer ( F2) : It contains the long term memory of the system.
3. Vigilance Parameter ( p ) : A parameter that controls the generality of the memory.

Larger p means more detailed memories, smaller p produces more general memories.

Qaa
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Spiking Neural Networks

What is Spiking Neural Network (SNN)?

Artificial neural networks that closely mimic natural neural networks are known as spiking
neural networks (SNNs). In addition to neuronal and synaptic status, SNNs incorporate time into
their working model. The idea is that neurons in the SNN do not transmit information at the end
of each propagation cycle (as they do in traditional multi-layer perceptron networks), but only
when a membrane potential — a neuron’s intrinsic quality related to its membrane electrical
charge — reaches a certain value, known as the threshold.

The neuron fires when the membrane potential hits the threshold, sending a signal to neighboring
neurons, which increase or decrease their potentials in response to the signal. A spiking neuron
model is a neuron model that fires at the moment of threshold crossing.
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SNN with connections and Biological Neuron

Artificial neurons, despite their striking resemblance to biological neurons, do not behave in the
same way. Biological and artificial NNs differ fundamentally in the following ways:
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e  Structure in general
e Computations in the brain
e In comparison to the brain, learning is a rule.

Alan Hodgkin and Andrew Huxley created the first scientific model of a Spiking Neural
Network in 1952. The model characterized the initialization and propagation of action potentials
in biological neurons. Biological neurons, on the other hand, do not transfer impulses directly. In
order to communicate, chemicals called neurotransmitters must be exchanged in the synaptic

gap.
How Does Spiking Neural Network Work?

Key Concepts

What distinguishes a traditional ANN from an SNN is the information propagation approach.
SNN aspires to be as close to a biological neural network as feasible. As a result, rather than
working with continually changing time values as ANN does, SNN works with discrete events
that happen at defined times. SNN takes a set of spikes as input and produces a set of spikes as
output (a series of spikes is usually referred to as spike trains).

The general idea is as;

e Each neuron has a value that is equivalent to the electrical potential of biological neurons at any
given time.

e The value of a neuron can change according to its mathematical model; for example, if a neuron
gets a spike from an upstream neuron, its value may rise or fall.

e If a neuron’s value surpasses a certain threshold, the neuron will send a single impulse to each
downstream neuron connected to the first one, and the neuron’s value will immediately drop
below its average.

e As aresult, the neuron will go through a refractory period similar to that of a biological neuron.
The neuron’s value will gradually return to its average over time.

Spike Based Neural Codes

Artificial spiking neural networks are designed to do neural computation. This necessitates that
neural spiking is given meaning: the variables important to the computation must be defined in
terms of the spikes with which spiking neurons communicate. A variety of neuronal information
encodings have been proposed based on biological knowledge:

e Binary Coding:
Binary coding is an all-or-nothing encoding in which a neuron is either active or inactive within
a specific time interval, firing one or more spikes throughout that time frame. The finding that
physiological neurons tend to activate when they receive input (a sensory stimulus such as light
or external electrical inputs) encouraged this encoding.

e Rate Coding:



Only the rate of spikes in an interval is employed as a metric for the information communicated
in rate coding, which is an abstraction from the timed nature of spikes. The fact that
physiological neurons fire more frequently for stronger (sensory or artificial) stimuli motivates
rate encoding.

e  Fully Temporal Codes

The encoding of a fully temporal code is dependent on the precise timing of all spikes. Evidence
from neuroscience suggests that spike-timing can be incredibly precise and repeatable. Timings
are related to a certain (internal or external) event in a fully temporal code (such as the onset of a
stimulus or spike of a reference neuron).

e Latency Coding

The timing of spikes is used in latency coding, but not the number of spikes. The latency
between a specific (internal or external) event and the first spike is used to encode information.
This is based on the finding that significant sensory events cause upstream neurons to spike
earlier.

SNN Architecture

Spiking neurons and linking synapses are described by configurable scalar weights in an SNN
architecture. The analogue input data is encoded into the spike trains using either a rate-based
technique, some sort of temporal coding or population coding as the initial stage in building an
SNN.

A biological neuron in the brain (and a simulated spiking neuron) gets synaptic inputs from other
neurons in the neural network, as previously explained. Both action potential production and
network dynamics are present in biological brain networks.
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Architecture of a multilayer spiking neural network.



The network dynamics of artificial SNNs are much simplified as compared to actual biological
networks. It is useful in this context to suppose that the modelled spiking neurons have pure
threshold dynamics (as opposed to refractoriness, hysteresis, resonance dynamics, or post-
inhibitory rebound features).

When the membrane potential of postsynaptic neurons reaches a threshold, the activity of
presynaptic neurons affects the membrane potential of postsynaptic neurons, resulting in an
action potential or spike.

Learning Rules in SNN’s

Learning is achieved in practically all ANNSs, spiking or non-spiking, by altering scalar-valued
synaptic weights. Spiking allows for the replication of a form of bio-plausible learning rule that
is not possible in non-spiking networks. Many variations of this learning rule have been
uncovered by neuroscientists under the umbrella term spike-timing-dependent plasticity (STDP).

Its main feature is that the weight (synaptic efficacy) connecting a pre-and post-synaptic neuron
is altered based on their relative spike times within tens of millisecond time intervals. The weight
adjustment is based on information that is both local to the synapse and local in time. The next
subsections cover both unsupervised and supervised learning techniques in SNNs.

Application of Spiking Neural Networks

In theory, SNNs can be used in the same applications as standard ANNs. SNNs can also
stimulate the central nervous systems of biological animals, such as an insect seeking food in an
unfamiliar environment. They can be used to examine the operation of biological brain networks
due to their realism.

Advantages and Disadvantagesof SNN

Advantages

e SNN is a dynamic system. As a result, it excels in dynamic processes like speech and dynamic
picture identification.

e When an SNNis already working, it can still train.

e Totrain an SNN, you simply need to train the output neurons.

e Traditional ANNs often have more neurons than SNNs; however, SNNs typically have fewer
neurons.

e Because the neurons send impulses rather than a continuous value, SNNs can work incredibly
quickly.

e Because they leverage the temporal presentation of information, SNNs have boosted
information processing productivity and noise immunity.

Disadvantages

e SNNs are difficult to train.
e Asof now, there is no learning algorithm built expressly for this task.



e Building a small SNN is impracticable.

Convolutional Neural Networks

What is a Neural Network?

Neural networks are modeled after our brains. There are individual nodes that form the layers in
the network, just like the neurons in our brains connect different areas.

Neural network with multiple hidden layers. Each layer has multiple nodes.

The inputs to nodes in a single layer will have a weight assigned to them that changes the effect
that parameter has on the overall prediction result. Since the weights are assigned on the links
between nodes, each node maybe influenced by multiple weights.

The neural network takes all of the training data in the input layer. Then it passes the data
through the hidden layers, transforming the values based on the weights at each node. Finally it
returns a value in the output layer.

It can take some time to properly tune a neural network to get consistent, reliable results. Testing
and training your neural network is a balancing process between deciding what features are the
most important to your model.
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Pixels of image fed as input
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Hidden Layers

What is Convelutional Neural Network?

A convolutional neural network is a feed-forward neural network that is generally used to
analyze visual images by processing data with grid-like topology. It’s also known as a ConvNet.
A convolutional neural network is used to detect and classify objects in an image.

Below is a neural network that identifies two types of flowers: Orchid and Rose.



https://www.simplilearn.com/tutorials/deep-learning-tutorial/neural-network

Identifies the flowers

Qutput Layer

Flowers of 2 varieties Input Layer
(Orchid/Rose) Hidden Layers

In CNN, every image is represented in the form of an array of pixel values.
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Real Image of the digit 8 Represented in the form Digit 8 represented in the form
of an array of pixels of 0’'s and 1's

The convolution operation forms the basis of any convolutional neural network. Let’s understand
the convolution operation using two matrices, a and b, of 1 dimension.

a=[5,3,759,7]
b=1[123]

In convolution operation, the arrays are multiplied element-wise, and the product is summed to
create a new array, which represents a*b.

The first three elements of the matrix a are multiplied with the elements of matrix b. The product
is summed to get the result.



m Multiply the arrays Sum the product

element wise

[5, 6, 6] 17

a=[5,3 2,
b=10,2 3]

axb=[71]

The next three elements from the matrix a are multiplied by the elements in matrix b, and the
product is summed up.

m Multiply the arrays Sum the product
element wise
[5, 6, 6] v
a= 325 [3, 4,15] 22

b=0,23]

axb=0722]

This process continues until the convolution operation is complete.
How Does CNN Recognize Images?

Consider the following images:



image for the symbol \ image for the symbol /

The boxes that are colored represent a pixel value of 1, and O if not colored.

When you press backslash (\), the below image gets processed.

When you press \, the above image is processed

When you press forward-slash (/), the below image is processed:
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When you press /, the above image is processed

Here is another example to depict how CNN recognizes an image:

|
N -

Real Image Represented in the form of
black and white pixels

As you can see from the above diagram, only those values are lit that have a value of 1.



Layers in a Convolutional Neural Network

A convolution neural network has multiple hidden layers that help in extracting information from
an image. The four important layers in CNN are:

Convolution layer
RelU layer

Pooling layer

Fully connected layer

PN PRE

Convolution Layer

This is the first step in the process of extracting valuable features from an image. A convolution
layer has several filters that perform the convolution operation. Every image is considered as a
matrix of pixel values.

Consider the following 5x5 image whose pixel values are either O or 1. There’s also a filter
matrix with a dimension of 3x3. Slide the filter matrix over the image and compute the dot
product to get the convolved feature matrix.
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ReLU layer

ReLU stands for the rectified linear unit. Once the feature maps are extracted, the next step is to
move them to a ReLU layer.

ReLU performs an element-wise operation and sets all the negative pixels to 0. It introduces non-

linearity to the network, and the generated output is a rectified feature map. Below is the graph
of a ReLU function:
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The original image is scanned with multiple convolutions and ReL U layers for locating the
features.

Feature Map



Input Feature Map

Pooling Layer

Pooling is a down-sampling operation that reduces the dimensionality of the feature map. The
rectified feature map now goes through a pooling layer to generate a pooled feature map.

Rectified feature map

1 4 2 7

Pooled feature map

max pooling with 2x2 filters o)
2 2 = = and stride 2 8
F } o | 7 ) a | 7

Max(3,4,1,2) =4

The pooling layer uses various filters to identify different parts of the image like edges, corners,
body, feathers, eyes, and beak.



Here’s how the structure of the convolution neural network looks so far:
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The next step in the process is called flattening. Flattening is used to convert all the resultant 2-
Dimensional arrays from pooled feature maps into a single long continuous linear vector.

6
6 8 Flattening 8
4 7 4

Pooled feature map




The flattened matrix is fed as input to the fully connected layer to classify the image.
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Here’s how exactly CNN recognizes a bird:



e The pixels from the image are fed to the convolutional layer that performs the convolution
operation

e |tresultsin aconvolved map

e The convolved map is applied to a ReLU function to generate a rectified feature map

e Theimage is processed with multiple convolutions and ReLU layers for locating the features

o Different pooling layers with various filters are used to identify specific parts of the image

e The pooled feature map is flattened and fed to a fully connected layer to get the final output

—

Convolution + RelLU + Max Pooling ‘ Fully Connected Layer ‘

Feature Extraction in multiple hidden layers Classification in the output layer

Use case implementation using CNN

What a convolutional neural network (CNN) does differently

A convolutional neural network is a specific kind of neural network with multiple layers. It
processes data that has a grid-like arrangement then extracts important features. One huge
advantage of using CNNs is that you don't need to do a lot of pre-processing on images.

Convolution Max-Pooling Convolution Max-Pooling Flatten

A A A A A
/ Y Y Y Y

Input nl channels nlchannels n2 channels n2 channels

n3 units QOutput



A big difference between a CNN and a regular neural network is that CNNs use convolutions to
handle the math behind the scenes. A convolution is used instead of matrix multiplication in at
least one layer of the CNN. Convolutions take to two functions and return a function.

CNNs work by applying filters to your input data. What makes them so special is that CNNs are
able to tune the filters as training happens. That way the results are fine-tuned in real time, even
when you have huge data sets, like with images.

Since the filters can be updated to train the CNN better, this removes the need for hand-created
filters. That gives us more flexibility in the number of filters we can apply to a data set and the
relevance of those filters. Using this algorithm, we can work on more sophisticated problems like
face recognition.

How Convolutional Neural Networks Work

Convolutional neural networks are based on neuroscience findings. They are made of layers of
artificial neurons called nodes. These nodes are functions that calculate the weighted sum of the
inputs and return an activation map. This is the convolution part of the neural network.

Each node in a layer is defined by its weight values. \When you give a layer some data, like an
image, it takes the pixel values and picks out some of the visual features.

When you're working with data in a CNN, each layer returns activation maps. These maps point
out important features in the data set. 1T you gave the CNN an image, it'll point out features based
on pixel values, like colors, and give you an activation function.

Usually with images, a CNN will initially find the edges of the picture. Then this slight definition
of the image will get passed to the next layer. Then that layer will start detecting things like
corners and color groups. Then that image definition will get passed to the next layer and the
cycle continues until a prediction is made.

As the layers get more defined, this is called max pooling. It only returns the most relevant
features from the layer in the activation map. This is what gets passed to each successive layer
until you get the final layer.
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The last layer of a CNN is the classification layer which determines the predicted value based on
the activation map. If you pass a handwriting sample to a CNN, the classification layer will tell
you what letter is in the image. This is what autonomous vehicles use to determine whether an
object is another car, a person, or some other obstacle.

Training a CNN is similar to training many other machine learning algorithms. You'll start with
some training data that is separate from your test data and you'll tune your weights based on the
accuracy of the predicted values. Just be careful that you don't overfit your model.

Different types of CNNs

There are multiple kinds of CNNs you can use depending on your problem.

1D CNN: With these, the CNN kernel moves in one direction. 1D CNNs are usually used on
time-series data.

2D CNN: These kinds of CNN kernels move in two directions. You'll see these used with image
labelling and processing.

3D CNN: This kind of CNN has a kernel that moves in three directions. With this type of CNN,
researchers use them on 3D images like CT scans and MRIs.

In most cases, you'll see 2D CNNs because those are commonly associated with image data.
Here are some of the applications that you might see CNNs used for.



Recognize images with little preprocessing

Recognize different hand-writing

Computer vision applications

Used in banking to read digits on checks

Used in postal services to read zip codes on an envelope

Architecture of CNN

A typical CNN has the following 4 layers (O’Shea and Nash 2015)

1. Inputlayer

2. Convolution layer

3. Pooling layer

4. Fully connected layer

Please note that we will explain a 2 dimensional (2D) CNN here. But the same concepts apply to
a 1 (or 3) dimensional CNN as well.

Input layer

The input layer represents the input to the CNN. An example input, could be a 28 pixel by 28
pixel grayscale image. Unlike FNN, we do not “flatten” the input to a 1D vector, and the input is
presented to the network in 2D as a 28 x 28 matrix. This makes capturing spatial relationships
easier.

Convolution layer

The convolution layer is composed of multiple filters (also called kernels). Filters for a 2D image
are also 2D. Suppose we have a 28 pixel by 28 pixel grayscale image. Each pixel is represented
by a number between 0 and 255, where O represents the color black, 255 represents the color
white, and the values in between represent different shades of gray. Suppose we have a 3 by 3
filter (9 values in total), and the values are randomly set to 0 or 1. Convolution is the process of
placing the 3 by 3 filter on the top left corner of the image, multiplying filter values by the pixel
values and adding the results, moving the filter to the right one pixel at a time and repeating this
process. When we get to the top right corner of the image, we simply move the filter down one
pixel and restart from the left. This process ends when we get to the bottom right corner of the
image.


https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#OSheaEtAl

Figure 2: A 3 by 3 filter applied to a 4 by 4 image, resulting in a
2 by 2 image (Dumoulin and Visin 2016)

Covolution operator has the following parameters:

Filter size

Padding

Stride

Dilation

Activation function

vk wn e

Filter size can be 5 by 5, 3 by 3, and so on. Larger filter sizes should be avoided as the learning
algorithm needs to learn filter values (weights), and larger filters increase the number of weights
to be learned (more compute capacity, more training time, more chance of overfitting). Also, odd
sized filters are preferred to even sized filters, due to the nice geometric property of all the input
pixels being around the output pixel.

If you look at Figure 2 you see that after applying a 3 by 3 filter to a 4 by 4 image, we end up
with a 2 by 2 image — the size of the image has gone down. If we want to keep the resultant
image size the same, we can use padding. We pad the input in every direction with 0’s before
applying the filter. If the padding is 1 by 1, then we add 1 zero in evey direction. If its 2 by 2,
then we add 2 zeros In every direction, and so on.


https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin

Figure 3: A 3 by 3 filter appliedtoa 5
by 5 image, with padding of 1, resulting in a 5 by 5 image (Dumoulin and Visin 2016)

As mentioned before, we start the convolution by placing the filter on the top left corner of the
image, and after multiplying filter and image values (and adding them), we move the filter to the
right and repeat the process. How many pixels we move to the right (or down) is the stride. In
figure 2 and 3, the stride of the filter is 1. We move the filter one pixel to the right (or down). But
we could use a different stride. Figure 4 shows an example of using stride of 2.


https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin

Figure 4: A 3 by 3 filter applied to a 5 by 5 image, with
stride of 2, resulting in a 2 by 2 image (Dumoulin and Visin 2016)

When we apply a, say 3 by 3, filter to an image, our filter’s output is affected by pixels in a 3 by
3 subset of the image. If we like to have a larger receptive field (portion of the image that affect
our filter’s output), we could use dilation. If we set the dilation to 2 (Figure 5), instead of a
contiguous 3 by 3 subset of the image, every other pixel of a 5 by 5 subset of the image affects
the filter’s output.

Figure 5: A 3 by 3 filter appliedtoa 7
by 7 image, with dilation of 2, resulting in a 3 by 3 image (Dumoulin and Visin 2016)



https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin
https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin

After the filter scans the whole image, we apply an activation function to filter output to
introduce non-linearlity. The preferred activation function used in CNN is ReLU or one its
variants like Leaky ReLU (Nwankpa et al. 2018). ReLU leaves pixels with positive values in
filter output as is, and replacing negative values with 0 (or a small number in case of Leaky
ReLU). Figure 6 shows the results of applying ReLU activation function to a filter output.
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Filter output Filter output after RelLU

Figure 6: Applying ReLU activation
function to filter output

Given the input size, filter size, padding, stride and dilation you can calculate the output size of
the convolution operation as below.

(input size—(filter size + (filter size -1)*(dilation - 1)))+(2*padding)stride+1
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Figure 7:
[llustration of single input channel two dimensional convolution

Figure 7 illustrates the calculations for a convolution operation, via a 3 by 3 filter on a single
channel 5 by 5 input vector (5 x 5 x 1). Figure 8 illustrates the calculations when the input vector
has 3 channels (5 x 5 x 3). To show this in 2 dimensions, we are displaying each channel in input
vector and filter separately. Figure 9 shows a sample multi-channel 2D convolution in 3
dimensions.


https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#NwankpaEtAl
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Figure 8: lllustration of multiple input channel two dimensional convolution

As Figures 8 and 9 show the output of a multi-channel 2 dimensional filter is a single channel 2
dimensional image. Applying multiple filters to the input image results in a multi-channel 2
dimensional image for the output. For example, if the input image is 28 by 28 by 3 (rows x
columns x channels), and we apply a 3 by 3 filter with 1 by 1 padding, we would get a 28 by 28
by 1 image. If we apply 15 filters to the input image, our output would be 28 by 28 by 15. Hence,
the number of filters in a convolution layer allows us to increase or decrease the channel size.

Pooling layer

The pooling layer performs down sampling to reduce the spatial dimensionality of the input. This
decreases the number of parameters, which in turn reduces the learning time and computation,
and the likelihood of overfitting. The most popular type of pooling is max pooling. Its usually a 2



by 2 filter with a stride of 2 that returns the maximum value as it slides over the input data
(similar to convolution filters).

Fully connected layer

The last layer in a CNN is a fully connected layer. We connect all the nodes from the previous
layer to this fully connected layer, which is responsible for classification of the image.

Deep Learning

Deep learning is based on the branch of machine learning, which is a subset of artificial
intelligence. Since neural networks imitate the human brain and so deep learning will do. In deep
learning, nothing is programmed explicitly. Basically, it is a machine learning class that makes
use of numerous nonlinear processing units so as to perform feature extraction as well as
transformation. The output from each preceding layer is taken as input by each one of the
successive layers.

Deep learning models are capable enough to focus on the accurate features themselves by
requiring a little guidance from the programmer and are very helpful in solving out the problem
of dimensionality. Deep learning algorithms are used, especially when we have a huge no of
inputs and outputs.

Since deep learning has been evolved by the machine learning, which itself is a subset of
artificial intelligence and as the idea behind the artificial intelligence is to mimic the human
behavior, so same is "the idea of deep learning to build such algorithm that can mimic the brain™.

Deep learning is implemented with the help of Neural Networks, and the idea behind the
motivation of Neural Network is the biological neurons, which is nothing but a brain cell.

“Deep learning is a collection of statistical techniques of machine learning for learning feature
hierarchies that are actually based on artificial neural networks.”


https://www.javatpoint.com/deep-learning-algorithms
https://www.javatpoint.com/machine-learning
https://www.javatpoint.com/artificial-intelligence-tutorial
https://www.javatpoint.com/artificial-neural-network

Example of Deep Learning
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In the example given above, we provide the raw data of images to the first layer of the input layer. After

then, these input layer will determine the patterns of local contrast that means it will differentiate on

the basis of colors, luminosity, etc. Then the 1st hidden layer will determine the face feature, i.e., it will

fixate on eyes, nose, and lips, etc. And then, it will fixate those face features on the correct face

template. So, in the 2" hidden layer, it will actually determine the correct face here as it can be seen in

the above image, after which it will be sent to the output layer. Likewise, more hidden layers can be

added to solve more complex problems, for example, if you want to find out a particular kind of face

having large or light complexions. So, as and when the hidden layers increase, we are able to solve

complex problems.

Architectures

e Deep Neural Networks

It is a neural network that incorporates the complexity of a certain level, which means several
numbers of hidden layers are encompassed in between the input and output layers. They are

highly proficient on model and process non-linear associations.
o Deep Belief Networks

A deep belief network is a class of Deep Neural Network that comprises of multi-layer belief

networks.
Steps to perform DBN:

1. With the help of the Contrastive Divergence algorithm, a layer of features is learned

from perceptible units.

2. Next, the formerly trained features are treated as visible units, which perform learning

of features.

3. Llastly, when the learning of the final hidden layer is accomplished, then the whole DBN

is trained.



e Recurrent Neural Networks
It permits parallel as well as sequential computation, and it is exactly similar to that of the
human brain (large feedback network of connected neurons). Since they are capable enough to
reminisce all of the imperative things related to the input they have received, so they are more
precise.

Types of Deep Learning Networks

1. Feed Forward Neural Network

A feed-forward neural network is none other than an Artificial Neural Network, which ensures
that the nodes do not form a cycle. In this kind of neural network, all the perceptrons are
organized within layers, such that the input layer takes the input, and the output layer generates
the output. Since the hidden layers do not link with the outside world, it is named as hidden
layers. Each of the perceptrons contained in one single layer is associated with each node in the
subsequent layer. It can be concluded that all of the nodes are fully connected. It does not contain
any visible or invisible connection between the nodes in the same layer. There are no back-loops
in the feed-forward network. To minimize the prediction error, the backpropagation algorithm
can be used to update the weight values.

Applications:

o Data Compression

« Pattern Recognition

o Computer Vision

e Sonar Target Recognition

e Speech Recognition

o Handwritten Characters Recognition

2. Recurrent NeuralNetwork

Recurrent neural networks are yet another variation of feed-forward networks. Here each of the
neurons present in the hidden layers receives an input with a specific delay in time. The
Recurrent neural network mainly accesses the preceding info of existing iterations. For example,
to guess the succeeding word in any sentence, one must have knowledge about the words that
were previously used. It not only processes the inputs but also shares the length as well as
weights crossways time. It does not let the size of the model to increase with the increase in the
input size. However, the only problem with this recurrent neural network is that it has slow
computational speed as well as it does not contemplate any future input for the current state. It
has a problem with reminiscing prior information.

Applications:

e Machine Translation
e Robot Control
e Time Series Prediction


https://www.javatpoint.com/keras-artificial-neural-networks
https://www.javatpoint.com/keras-recurrent-neural-networks

e Speech Recognition

e Speech Synthesis

e Time Series Anomaly Detection
e Rhythm Learning

e Music Composition

3. Convolutional Neural Network

Convolutional Neural Networks are a special kind of neural network mainly used for image
classification, clustering of images and object recognition. DNNs enable unsupervised
construction of hierarchical image representations. To achieve the best accuracy, deep
convolutional neural networks are preferred more than any other neural network.

Applications:

o Identify Faces, Street Signs, Tumors.
e Image Recognition.

e Video Analysis.

e NLP.

e Anomaly Detection.

e Drug Discovery.

e Checkers Game.

o Time Series Forecasting.

4. Restricted Boltzmann Machine

RBMs are yet another variant of Boltzmann Machines. Here the neurons present in the input
layer and the hidden layer encompasses symmetric connections amid them. However, there is no
internal association within the respective layer. But in contrast to RBM, Boltzmann machines do
encompass internal connections inside the hidden layer. These restrictions in BMs helps the
model to train efficiently.

Applications:

e Filtering.

e Feature Learning.

e Classification.

o Risk Detection.

e Business and Economic analysis.

5. Autoencoders

An autoencoder neural network is another kind of unsupervised machine learning algorithm.
Here the number of hidden cells is merely small than that of the input cells. But the number of
input cells is equivalent to the number of output cells. An autoencoder network is trained to
display the output similar to the fed input to force AEs to find common patterns and generalize
the data. The autoencoders are mainly used for the smaller representation of the input. It helps in
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the reconstruction of the original data from compressed data. This algorithm is comparatively
simple as it only necessitates the output identical to the input.

e Encoder: Convert input data in lower dimensions.
e Decoder: Reconstruct the compressed data.

Applications:

e Classification.
e Clustering.
e Feature Compression.

Deep learning applications

e Self-Driving Cars
In self-driven cars, it is able to capture the images around it by processing a huge amount of
data, and then it will decide which actions should be incorporated to take a left or right or
should it stop. So, accordingly, it will decide what actions it should take, which will further
reduce the accidents that happen every year.

e Voice Controlled Assistance
When we talk about voice control assistance, then Siri is the one thing that comes into our
mind. So, you can tell Siri whatever you want it to do it for you, and it will search it for you and
display it for you.

e Automatic Image Caption Generation
Whatever image that you upload, the algorithm will work in such a way that it will generate
caption accordingly. If you say blue colored eye, it will display a blue-colored eye with a caption
at the bottom of the image.

e Automatic Machine Translation
With the help of automatic machine translation, we are able to convert one language into
another with the help of deep learning.

Limitations

e Itonly learns through the observations.
e It comprises of biases issues.

Advantages

e ltlessens the need for feature engineering.

e It eradicates all those costs that are needless.

e It easily identifies difficult defects.

e ltresults in the best-in-class performance on problems.

Disadvantages

e It requires an ample amount of data.



e ltis quite expensive to train.
e It does not have strong theoretical groundwork.

Extreme Learning Machine

The learning pace of the feed-forward neural networks is considered as much slower than required. Due

to this limitation, it has been a major barrier in many applications for decades. One of the major reasons
is that sluggish gradient-based learning algorithms are widely employed to train neural networks which
iteratively tune all of the network’s parameters and makes the learning process slower. Unlike standard
learning approaches, there is a learning technique for Single-Hidden Layer Feed-Forward Neural
Networks (SLFNs) that is called Extreme Learning Machine (ELM). The ELMs are believed to have the
ability to learn thousands of times faster than networks trained using the backpropagation technique. In
this article, we will discuss ELM in detail. The major points that we will cover in this article are listed
below.
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Let’s proceed with understanding Feed-Forward NN.

The Feed-Forward Neural Network

The feedforward neural network was the earliest and most basic type of artificial neural network
to be developed. In this network, information flows only in one direction forward from the input
nodes to the output nodes, passing via any hidden nodes. The network is devoid of cycles or
loops.

A single-layer perceptron network is the simplest type of FeedForward neural network,
consisting of a single layer of output nodes with the inputs fed straight to the outputs via a
sequence of weights. Each node calculates the total of the weights and inputs, and if the value is
greater than a threshold (usually 0), the neuron fires and takes the active value (commonly 1);
otherwise, it takes the deactivated value (typically 0 or -1). Artificial neurons or linear threshold
units are neurons with this type of activation function. The term perceptron is frequently used in
the literature to refer to networks that contain only one of these components.
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Extreme Learning Machine (ELM)

Extreme learning machines are feed-forward neural networks having a single layer or multiple
layers of hidden nodes for classification, regression, clustering, sparse approximation,
compression, and feature learning, where the hidden node parameters do not need to be
modified. These hidden nodes might be assigned at random and never updated, or they can be
inherited from their predecessors and never modified. In most cases, the weights of hidden nodes
are usually learned in a single step which essentially results in a fast learning scheme.

These models, according to their inventors, are capable of producing good generalization
performance and learning thousands of times quicker than backpropagation networks. These
models can also outperform support vector machines in classification and regression
applications, according to the research.

Fundamentals of ELM

An ELM is a quick way to train SLFN networks (shown in the below figure). An SLFN
comprises three layers of neurons, however, the name Single refers to the model’s one layer of
non-linear neurons which is the hidden layer. The input layer offers data features but does not do
any computations, whereas the output layer is linear with no transformation function and no bias.
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The ELM technique sets input layer weights W and biases b at random and never adjusts them.
Because the input weights are fixed, the output weights ???? are independent of them (unlike in
the Backpropagation training method) and have a straightforward solution that does not require
iteration. Such a solution is also linear and very fast to compute for a linear output layer.

Random input layer weights improve the generalization qualities of a linear output layer solution
because they provide virtually orthogonal (weakly correlated) hidden layer features. A linear
system’s solution is always in a range of inputs. If the solution weight range is constrained,
orthogonal inputs provide a bigger solution space volume with these constrained weights.
Smaller weight norms tend to make the system more stable and noise resistant since input errors
are not aggravating in the output of the linear system with smaller coefficients. As a result, the
random hidden layer creates weakly correlated hidden layer features, allowing for a solution with
a low norm and strong generalization performance.

Variants of ELM
In this section, we will summarize several variants of ELM and will introduce them briefly.
ELM for Online Learning

There are numerous types of data in real-world applications, thus ELM must be changed to
effectively learn from these data. For example, because the dataset is increasing, we may not
always be able to access the entire dataset. From time to time, new samples are added to the
dataset. Every time the set grows, we must retrain the ELM.

However, because the new samples frequently account for only a small portion of the total, re-
training the network using the entire dataset again is inefficient. Huang and Liang proposed an
online sequential ELM to address this issue (OS-ELM). The fundamental idea behind OS-ELM
is to avoid re-training over old samples by employing a sequential approach. OS-ELM can
update settings over new samples consecutively after startup. As a result, OS-ELM can be
trained one at a time or block by block.

Incremental ELM

To build an incremental feedforward network, Huang et al. developed an incremental extreme
learning machine (I-ELM). When a new hidden node was introduced, I-ELM randomly added
nodes to the hidden layer one by one, freezing the output weights of the existing hidden nodes. I-
ELM is effective for SLFNs with piecewise continuous activation functions (including
differentiable) as well as SLFNs with continuous activation functions ( such as threshold).

Pruning ELM

Rong et al. proposed a pruned-ELM (P-ELM) algorithm as a systematic and automated strategy
for building ELM networks in light of the fact that using too few/many hidden nodes could lead
to underfitting/overfitting concerns in pattern categorization. P-ELM started with a large number
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of hidden nodes and subsequently deleted the ones that were irrelevant or lowly relevant during
learning by considering their relevance to the class labels.

ELM’s architectural design can thus be automated as a result. When compared to the traditional
ELM, simulation results indicated that the P-ELM resulted in compact network classifiers that
generate fast response and robust prediction accuracy on unseen data.

Error-Minimized ELM

Feng et al. suggested an error-minimization-based method for ELM (EM-ELM) that can
automatically identify the number of hidden nodes in generalized SLFNs by growing hidden
nodes one by one or group by group. The output weights were changed incrementally as the
networks grew, reducing the computational complexity dramatically. The simulation results on
sigmoid type hidden nodes demonstrated that this strategy may greatly reduce the computational
cost of ELM and offer an ELM implementation that is both efficient and effective.

Evolutionary ELM

When ELM is used, the number of hidden neurons is usually selected at random. Due to the
random determination of input weights and hidden biases, ELM may require a greater number of
hidden neurons. Zhu et al. introduced a novel learning algorithm called evolutionary extreme
learning machine (E-ELM) for optimizing input weights and hidden biases and determining
output weights.

To improve the input weights and hidden biases in E-ELM, the modified differential
evolutionary algorithm was utilized. The output weights were determined analytically using
Moore— Penrose (MP) generalized inverse.

Applications of ELM

Extreme learning machine has been used in many application domains such as medicine,
chemistry, transportation, economy, robotics, and so on due to its superiority in training speed,
accuracy, and generalization. This section highlights some of the most common ELM
applications.

[oT Application

As the Internet of Things (1oT) has gained more attention from academic and industry circles in
recent years, a growing number of scientists have developed a variety of 10T approaches or
applications based on modern information technologies.

Using ELM in loT applications can be done in a variety of ways. Rathore and Park developed an
ELM-based strategy for detecting cyber-attacks. To identify assaults from ordinary visits, they
devised a fog computing-based attack detection system and used an updated ELM as a classifier.
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Transportation Application

The application of machine learning in transportation is a popular issue. Scientists, for example,
used machine learning techniques to create a driver sleepiness monitoring system to prevent
unsafe driving and save lives. It’s been a long time since an extreme learning machine was used
to solve transportation-related challenges. Sun and Ng suggested a two-stage approach to
transportation system optimization that integrated linear programming and extreme learning
machines. Two trials showed that combining their approaches might extend the life of a
transportation system while also increasing its reliability.

Convolutional Networks
Convolutional networks convolutional ( , ), also known as neural networks or
CNNs, are a specialized kind of neural network for processing data that has a known, grid-
like topology. Examples include time-series data, which can be thought of as a 1D grid
taking samples at regular time intervals, and image data,which can be thought of as a 2D
grid of pixels. Convolutional

Convolution is a specialized kind of linear operation. Convolutional networks are simply
neural networks that use convolution in place of general matrix multiplication in at
least one of their layers.

The Convolution Operation
convolution is an operation on two functions of a realvalued argument. To motivate the
definition of convolution, we start with examples of two functions we might use.

Suppose we are tracking the location of a spaceship with a laser sensor. Our

laser sensor provides a single output x(t), the position of the spaceship at time

t. Both x and t are real-valued, i.e.,, we can get a different reading from the laser sensor at
any instant in time.

Now suppose that our laser sensor is somewhat noisy. To obtain a less noisy estimate of
the spaceship’s position, we would like to average together several measurements. Of
course, more recent measurements are more relevant, so we will want this to be a
weighted average that gives more weight to recent measurements. We can do this with a
weighting function w(a), where a is the age of a measurement.If we apply such a weighted
average operation at every moment, we obtain a new function providing a smoothed
estimate of the position s of the spaceship:

s(t) = [ x(a)w(t —a)da

This operation is called convolution. The convolution operation is typically
denoted with an asterisk:
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s(t) = (v =w)(t)

In our example, w needs to be a valid probability density function, or the output is not a
weighted average. Also, w needs to be 0 for all negative arguments, or it will look into the
future, which is presumably beyond our capabilities.

In convolutional network terminology, the first argument (in this example, the function x)
to the convolution is often referred to as the input and the second argument (in this
example, the function w) as the kernel. The output is sometimes referred to as the feature
map.

In our example, it might be more realistic to assume that our laser provides a measurement
once per second. The time index t can then take on only integer values. If we now assume
that x and w are defined only on integer t, we can define the discrete convolution:

[ @

s(t) = (x*xw)(t) = Z xr(a)w(t —a)

=00

In machine learning applications, the input is usually a multidimensional array

of data and the kernel is usually a multidimensional array of parameters that are

adapted by the learning algorithm. We will refer to these multidimensional arrays

as tensors.

Finally, we often use convolutions over more than one axis at a time. For

example, if we use a two-dimensional image I as our input, we probably also want to use a
two-dimensional kernel K:

S(z,7) = * i) ZZI (m,n)K (i —m,j —n).

Convolution is commutative, meaning we can equivalently write:

S(i,7)= (K% T)( ZZI i —m, ] —n)K(m,n).

™m
Usually the latter formula is more stralghtforward to implement in a machine learning

library, because there is less variation in the range of valid values of m and n.The
commutative property of convolution arises because we have flipped the kernel relative to
the input, in the sense that as m increases, the index into the input increases, but the index
into the kernel decreases. The only reason to flip the kernel is to obtain the commutative

property.

While the commutative property is useful for writing proofs, it is not usually an important
property of a neural network implementation. Instead, many neural network libraries



implement a related function called the cross-correlation, which is the same as convolution
but without flipping the kernel:

S(i,j7) =U = K)(i,j) = Z Z 1(i +m,j+n)K(m,n).

Fig. 9.1 for an example of convolution (without kernel flipping) applied to a 2-D
tensor.Discrete convolution can be viewed as multiplication by a matrix. However, the
matrix has several entries constrained to be equal to other entries. For example, for
univariate discrete convolution, each row of the matrix is constrained to be equal to the
row above shifted by one element. This is known as a Toeplitz matrix.

In two dimensions, a doubly block circulant matrix corresponds to convolution. In addition
to these constraints that several elements be equal to each other, convolution usually
corresponds to a very sparse matrix (a matrix whose entries are mostly equal to zero). This
is because the kernel is usually much smaller than the input image. Any neural network
algorithm that works with matrix multiplication and does not depend on specific
properties of the matrix structure should work with convolution, without requiring any
further changes to the neural network.Typical convolutional neural networks do make use
of further specializations in order to deal with large inputs efficiently, but these are not
strictly necessary from a theoretical perspective.
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I'igure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applyving the kernel to the corresponding
upper-left region of the input tensor.

Motivation

Convolution leverages three important ideas that can help improve a machine learning
system: sparse interactions parameter sharing equivariant , and representations. Moreover,
convolution provides a means for working with inputs of variable

size. We now describe each of these ideas in turn.

Traditional neural network layers use matrix multiplication by a matrix of

parameters with a separate parameter describing the interaction between each

input unit and each output unit. This means every output unit interacts with every input
unit. Convolutional networks, however, typically have sparse interactions (also referred to
as sparse connectivity or sparse weights). This is accomplished by making the kernel smaller
than the input. For example, when processing an image, the input image might have
thousands or millions of pixels, but we can detect small, meaningful features such as edges
with kernels that occupy only tens or hundreds of pixels. This means that we need to store
fewer parameters, which both reduces the memory requirements of the model and
improves its statistical efficiency. It also means that computing the output requires fewer
operations. These improvements in efficiency are usually quite large. If there are m inputs
and n outputs, then matrix multiplication requiresmxn parameters and the algorithms used
in practice have O(m x n) runtime (per example). If we limit the number of connections



each output may have to k, then the sparsely connected approach requires only k x n
parameters and O(k x n) runtime.

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit,r3, and
also highlight the output units in s that are affected by this unit. (ZTop) When s is formed
by convolution with a kernel of width 3, only three outputs are affected by x. (Bottom)
When s is formed by matrix multiplication, connectivity is no longer sparse, so all of the
outputs are affected by 3.



Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit,ss, and
also highlight the input units in 2 that affect this unit. These units are known as the
receptive field of s5. (Top) When s is formed by convolution with a kernel of width 3, only
three inputs affect s3. (Bottom) When s is formed by matrix multiplication, connectivity
is no longer sparse, so all of the inputs affect s3.
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Figure 9.4: The receptive field of the units in the deeper layers of a convelutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (Fig. 9.12) or pooling
(Sec. 9.3). This means that even though direct connections in a convolutional net are very
sparse, units in the deeper layers can be indirectly connected to all or most of the input
image.
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Parameter sharing refers to using the same parameter for more than one function in a
model. In a traditional neural net, each element of the weight matrix is used exactly once
when computing the output of a layer. It is multiplied by one element of the input and then
never revisited. As a synonym for parameter sharing, one can say that a network has tied
weights, because the value of the weight applied to one input is tied to the value of a weight
applied elsewhere. In a convolutional neural net, each member of the kernel is used at
every position of the input (except perhaps some of the boundary pixels, depending on the
design decisions regarding the boundary). The parameter sharing used by the convolution
operation means that rather than learning a separate set of parameters for every location,
we learn
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Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top) The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom) The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

only one set. This does not affect the runtime of forward propagation—it is still O(k x n)—
but it does further reduce the storage requirements of the model to k parameters. Recall
that k is usually several orders of magnitude less than m. Since m and n are usually roughly
the same size, k is practically insignificant compared to mx n.

In the case of convolution, the particular form of parameter sharing causes the layer to
have a property called equivariance to translation. To say a function is equivariant means
that if the input changes, the output changes in the same way. Specifically, a function f(x) is
equivariant to a function g if f (g(x)) = g(f(x)). In the case of convolution, if we let g be any
function that translates the input, i.e., shifts it, then the convolution function is equivariant
to g. For example, let I be a function giving image brightness at integer coordinates. Let g be
a function mapping one image function to another image function, such that Il = g(I ) is

the image function with IB(x, y) = [(x — 1, y). This shifts every pixel of I one unit to the right.
If we apply this transformation to I, then apply convolution, the result will be the same as if
we applied convolution to I, then applied the transformation g to the output.

Pooling

A typical layer of a convolutional network consists of three stages (see Fig. 9.7). In the first
stage, the layer performs several convolutions in parallel to produce a set of linear
activations. In the second stage, each linear activation is run through a nonlinear activation
function, such as the rectified linear activation function. This stage is sometimes called the
detector stage. In the third stage, we use a pooling function to modify the output of the layer
further.



A pooling function replaces the output of the net at a certain location with a summary
statistic of the nearby outputs. For example, the max pooling (Zhou and Chellappa, 1988)
operation reports the maximum output within a rectangular

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
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Figure 9.7: The components of a fypical convolutional neural network layer. There are two
commonly used sets of terminology for describing these layers. (Left) In this terminology,
the convolutional net is viewed as a small number of relatively complex layers, with each
layer having many “stages.” In this terminology, there is a one-to-one mapping between
kernel tensors and network layers. In this book we generally use this terminology. (Right)
[n this terminology, the convolutional net is viewed as a larger number of simple layers;
every step of |')1‘()(‘-e.~'rsi11g is regarded as a layer in its own 1‘ighr-. This means that not every
“layer” has parameters.
based on the distance from the central pixel. In all cases, pooling helps to make the
representation become approximately invariant to small translations of the input.
Invariance to translation means that if we translate the input by a small amount, the values
of most of the pooled outputs do not change. See Fig. for an example 9.8 of how this works.
Invariance to local translation can be a very useful property if we care more about
whether some feature is present than exactly where it is.
For example, when determining whether an image contains a face, we need not know the
location of the eyes with pixel-perfect accuracy, we just need to know that there is an eye
on the left side of the face and an eye on the right side of the face. In other contexts, it is
more important to preserve the location of a feature. For example, if we want to find a
corner defined by two edges meeting at a specific orientation, we need to preserve the
location of the edges well enough to test whether they meet.
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Figure 9.8: Max pooling introduces invariance. (Top) A view of the middle of the output
of a convolutional layer. The bottom row shows outputs of the nonlinearity. The top
row shows the outputs of max pooling, with a stride of one pixel between pooling regions
and a pooling region width of three pixels. (Bottom) A view of the same network, after
the input has been shifted to the right by one pixel. Every value in the bottom row has
changed, but only half of the values in the top row have changed, because the max pooling
units are only sensitive to the maximum value in the neighborhood, not its exact location.

Pooling over spatial regions produces invariance to translation, but if we pool over the
outputs of separately parametrized convolutions, the features can learn which
transformations to become invariant to (see Fig. 9.9). Because pooling summarizes the
responses over a whole neighborhood, it is possible to use fewer pooling units than
detector units, by reporting summary statistics for pooling regions spaced k pixels apart
rather than 1 pixel apart. See Fig. 9.10 for an example. This improves the computational
efficiency of the network because the next layer has roughly k times fewer inputs to
process. When the number of parameters in the next layer is a function of its input size
(such as when the next layer is fully connected and based on matrix multiplication) this
reduction in the input size can also result in improved statistical efficiency and reduced
memory requirements for storing the parameters.

For many tasks, pooling is essential for handling inputs of varying size. For example, if we
want to classify images of variable size, the input to the classification layer must have a
fixed size. This is usually accomplished by varying the size of an offset between pooling
regions so that the classification layer always receives the same number of summary
statistics regardless of the input size. For example, the final pooling layer of the network



may be defined to output four sets of summary statistics, one for each quadrant of an
image, regardless of the image size.
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Figure 9.9: Ezample of learned invariances: A pooling unit that pools over multiple features
that are learned with separate l)dldlll(-‘f(-‘l‘-a can learn to be invariant to transformations of
the input. Here we show how a set of three learned filters and a max pooling unit can learn
to become invariant to rotation. All three filters are intended to detect a hand-written 5.
Each filter attempts to match a slightly different orientation of the 5. When a 5 appears in
the input, the corresponding filter will match it and cause a large activation in a detector
unit. The max pooling unit then has a large activation regardless of which pooling unit
was activated. We show here how the network processes two different inputs, resulting
in two different detector units being activated. The effect on the pooling unit is ronghly
the same either way. This principle is leveraged by maxout networks ((: .
20134) and other convolutional networks. Max pooling over spatial positions is naturally

invariant to translation; this multi-channel approach is only necessary for learning other
transformations.
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Figure 9.10: Pooling with downsampling. Here we use max-pooling with a pool width of
three and a stride between pools of two. This reduces the representation size by a factor
of two, which reduces the computational and statistical burden on the next layer. Note
that the rightmost pooling region has a smaller size, but must be included if we do not
want to ignore some of the detector units.

Pooling can complicate some kinds of neural network architectures that use
top-down information, such as Boltzmann machines and autoencoders.



Some examples of complete convolutional network architectures for classification
using convolution and pooling are shown in Fig. 9.11.
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Figure 9.11: Examples of architectures for classification with convolutional networks., The
specific strides and depths used in this fipure are not advisable for real use; they are
designed to be very shallow in order to fit onto the page. Real convolutional networks
also often involve significant amounts of branching, unlike the chain structures used
here for simplicity. (Left) A convolutional network that processes a fixed image size.
After alternating between convolution and pooling for a few layers, the tensor for the
convolutional feature map is reshaped to flatten out the spatial dimensions. The rest
of the network is an ordinary feedforward network classifier, as described in Chapter 6.
{ Center) A convolutional network that processes a variable-sized image, but still maintains
a fully connected section. This network uses a pooling operation with variably-sized pools
but a fixed number of pools, in order to provide a fixed-size vector of 576 units to the
fully connected portion of the network. (Right) A convolutional network that does not
have any fully connected weight laver. Instead, the last convolutional layer outputs one
feature map per class. The model presumably learns a map of how likely each class is to
oceur at each spatial location. Averaging a feature map down to a single value provides
the argument to the softmax classifier at the top.



Variants of the Basic Convolution Function

When discussing convolution in the context of neural networks, we usually do not refer
exactly to the standard discrete convolution operation as it is usually understood in the
mathematical literature. The functions used in practice differ slightly. Here we describe
these differences in detail, and highlight some useful properties of the functions used in
neural networks. First, when we refer to convolution in the context of neural networks, we
usually actually mean an operation that consists of many applications of convolution in
parallel. This is because convolution with a single kernel can only extract one kind of
feature, albeit at many spatial locations. Usually we want each layer of our network to
extract many kinds of features, at many locations.

Additionally, the input is usually not just a grid of real values. Rather, it is a grid of vector-
valued observations. For example, a color image has a red, green and blue intensity at each
pixel. In a multilayer convolutional network, the input to the second layer is the output of
the first layer, which usually has the output of many different convolutions at each position.
When working with images, we usually think of the input and output of the convolution as
being 3-D tensors, with one index into the different channels and two indices into the
spatial coordinates of each channel. Software implementations usually work in batch mode,
so they will actually use 4-D tensors, with the fourth axis indexing different examples in

the batch, but we will omit the batch axis in our description here for simplicity. Because
convolutional networks usually use multi-channel convolution, the linear operations they
are based on are not guaranteed to be commutative, even if kernel-flipping is used. These
multi-channel operations are only commutative if each operation has the same number of
output channels as input channels.

Assume we have a 4-D kernel tensor K with element Ki,jk,1 giving the connection strength
between a unit in channel i of the output and a unit in channel j of the input, with an offset
of k rows and I columns between the output unit and the

input unit. Assume our input consists of observed data V with element Vi,jk giving the
value of the input unit within channel i at row j and column k. Assume our output consists
of Z with the same format as V. If Z is produced by convolving K across V without flipping
K, then

Zijri. = E V.’,j Fm—1.k+4+n lKr'.,.’._-'rr;.._-n,
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where the summation over 1 , m and n is over all values for which the tensor indexing
operations inside the summation is valid. In linear algebra notation, we index into arrays
using a 1 for the first entry. This necessitates the -1 in the above formula. Programming
languages such as C and Python index starting from 0, rendering the above expression even
simpler.

We may want to skip over some positions of the kernel in order to reduce the
computational cost (at the expense of not extracting our features as finely). We



can think of this as downsampling the output of the full convolution function. If we want to
sample only every s pixels in each direction in the output, then we can define a
downsampled convolution function c such that
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We refer to s as the stride of this downsampled convolution. It is also possible to define a
separate stride for each direction of motion. See Fig. 9.12 for an illustration.

Strided
convolution

Downsampling

Convolution

Figure 9.12: Convolution with a stride. In this example, we use a stride of two. (Top)
Convolution with a stride length of two implemented in a single operation. (Bottom)
Convolution with a stride greater than one pixel is mathematically equivalent to convolution
with unit stride followed by downsampling. Obviously, the two-step approach involving
downsampling is computationally wasteful, because it computes many values that are
then discarded.

One essential feature of any convolutional network implementation is the ability to
implicitly zero-pad the input V in order to make it wider. Without this feature, the width of
the representation shrinks by one pixel less than the kernel width at each layer. Zero
padding the input allows us to control the kernel width and the size of the output
independently. Without zero padding, we are forced to



choose between shrinking the spatial extent of the network rapidly and using small
kernels—both scenarios that significantly limit the expressive power of the network.

Three special cases of the zero-padding setting are worth mentioning. One is the
extreme case in which no zero-padding is used whatsoever, and the convolution kernel is
only allowed to visit positions where the entire kernel is contained entirely within the
image. In MATLAB terminology, this is called valid convolution. In this case, all pixels in the
output are a function of the same number of pixels in the input, so the behavior of an
output pixel is somewhat more regular. However, the size of the output shrinks at each
layer. If the input image has width m and the kernel has width k, the output will be of width
m- k+ 1. The rate of this shrinkage can be dramatic if the kernels used are large. Since the
shrinkage is greater than 0, it limits the number of convolutional layers that can be
included in the network. As layers are added, the spatial dimension of the network will
eventually drop to 1 x 1, at which point additional layers cannot meaningfully be
considered convolutional. Another special case of the zero-padding setting is when just
enough zero-padding is added to keep the size of the output equal to the size of the input.
MATLAB calls this same convolution. In this case, the network can contain as many
convolutional layers as the available hardware can support, since the operation of
convolution does not modify the architectural possibilities available to the next layer.
However, the input pixels near the border influence fewer output pixels than the input
pixels near the center. This can make the border pixels somewhat underrepresented in the
model. This motivates the other extreme case, which MATLAB refers to as full convolution,
in which enough zeroes are added for every pixel to be visited k times in each direction,
resulting in an output image of width m+ k - 1. In this case, the output pixels near the
border are a function of fewer pixels than the output pixels near the center. This can make
it difficult to learn a single kernel that performs well at all positions in the convolutional
feature map. Usually the optimal amount of zero padding (in terms of test set classification
accuracy) lies somewhere between “valid” and “same”convolution.

In some cases, we do not actually want to use convolution, but rather locally connected
layers ( , , ). In this case, the adjacency matrix in the graph of our MLP is the
same, but every connection has its own weight, specified
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Figure 9.13: The effect of zero padding on network size: Consider a convolutional network
with a kernel of width six af every layer. In this example, we do not use any pooling, so
only the convelution operation itself shrinks the network size. (Top) In this convolutional
network, we do not use any implicit zero padding. This causes the representation to
shrink by five pixels at each layer. Starting from an input of sixteen pixels, we are only
able to have three convolutional layers, and the last layer does not ever move the kernel,
so arguably only two of the layers are truly convolutional. The rate of shrinking can
be mitigated by using smaller kernels, but smaller kernels are less expressive and some
shrinking is inevitable in this kind of architecture. [Bottom) By adding five implicit zeroes
to each layer, we prevent the representation from shrinking with depth. This allows us to
make an arbitrarily deep convolutional network.

by a 6-D tensor W. The indices into W are respectively: i, the output channel, j, the output
row, k, the output column, I, the input channel, m, the row offset within the input, and n, the
column offset within the input. The linear part of a locally connected layer is then given by
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This is sometimes also called unshared convolution, because it is a similar operation to
discrete convolution with a small kernel, but without sharing parameters across locations.
Fig. 9.14 compares local connections, convolution, and full connections.

Figure 9.14: Comparison of local connections, convolution, and full connections.

{Top) A locally connected layver with a pateh size of two pixels. Each edge is labeled with
a unique letter to show that each edge is associated with its own weight parameter,
{Center) A convolutional layer with a kernel width of two pixels. This model has exactly
the same conneetivity as the locally connected layer. The difference lies not in which units
interact with each other, but in how the parameters are shared. The locally connected layer
has no parameter sharing. The convolutional layer uses the same two weights repeatedly
across the entire input, as indicated by the repetition of the letters labeling each edge.
{Bottom) A fully connected layer resembles a locally connected layer in the sense that
each edge has its own parameter (there are too many to label explicitly with letters in this
diagram). However, it does not have the restricted connectivity of the locally connected
layer.
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Figure 9.15: A convolutional network with the first two output channels connected to
only the first two input channels, and the second two output channels connected to only
the second two input channels.



Figure 9.16: A comparison of locally connected layers, tiled convolution, and standard
convolution., All three have the same sets of connections between units, when the same
size of kernel is used. This diagram illustrates the use of a kernel that is two pixels wide.
The differences between the methods lies in how they share parameters. (Top) A locally
connected layer has no sharing at all. We indicate that each connection has its own weight
by labeling each connection with a unigue letter. (Center) Tiled convolution has a set of
t different kernels. Here we illustrate the case of t = 2. One of these kernels has edges

labeled “a™ and “b.” while the other has edges labeled “c" and “d." Each time we move one
pixel to the right in the output, we move on to using a different kernel. This means that,
like the locally connected layer, neighboring units in the output have different parameters.
Unlike the locally connected laver, after we have gone through allf available kernels,
we cycle back to the fisst kernel. If two output units are separated by a multiple oft

steps, then they share parameters. (Bottom ) Traditional convolution is equivalent to tiled
convolution with ¢ = 1. There is only one kernel and it is applied everywhere, as indicated
in the diagram by using the kernel with weights labeled “a” and “b" evervwhere,

the output width, this is the same as a locally connected layer.
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where % is the modulo operation, with t%t = 0, (t + 1)%t = 1, etc. It is straightforward to
generalize this equation to use a different tiling range for each dimension. Both locally
connected layers and tiled convolutional layers have an interesting interaction with max-
pooling: the detector units of these layers are driven by different filters. If these filters learn



to detect different transformed versions of the same underlying features, then the max-
pooled units become invariant to the learned transformation (see Fig. 9.9). Convolutional
layers are hard-coded to be invariant specifically to translation.

The matrix involved is a function of the convolution kernel. The matrix is sparse and each
element of the kernel is copied to several elements of the matrix. This view helps us to
derive some of the other operations needed to implement a convolutional network.
Multiplication by the transpose of the matrix defined by convolution is one such operation.
This is the operation needed to back-propagate error derivatives through a convolutional
layer, so it is needed to train convolutional networks that have more than one hidden layer.
This same operation is also needed if we wish to reconstruct the visible units from the
hidden units ( , ).

Reconstructing the visible units is an operation commonly used in the models described in
Part III of this book, such as autoencoders, RBMs, and sparse coding. Transpose
convolution is necessary to construct convolutional versions of those models. Like the
kernel gradient operation, this input gradient operation can be implemented using a
convolution in some cases, but in the general case requires a third operation to be
implemented. Care must be taken to coordinate this transpose operation with the forward
propagation. The size of the output that the transpose operation should return depends on
the zero padding policy and stride of the forward propagation operation, as well as the size
of the forward propagation’s output map. In some cases, multiple sizes of input to forward
propagation can result in the same size of output map, so the transpose operation must be
explicitly told what the size of the original input was.

These three operations—convolution, backprop from output to weights, and
backprop from output to inputs—are sufficient to compute all of the gradients needed to
train any depth of feedforward convolutional network, as well as to train convolutional
networks with reconstruction functions based on the transpose of convolution. See () for a
full derivation of the equations in the fully general multi-dimensional,
multi-example case. To give a sense of how these equations work, we present the two
dimensional, single example version here.

Suppose we want to train a convolutional network that incorporates strided
convolution of kernel stack K applied to multi-channel image V with stride s as defined by
c(K)V, s) as in Eq. 9.8. Suppose we want to minimize some loss function J(V,K). During
forward propagation, we will need to use c itself to output Z, which is then propagated
through the rest of the network and used to compute the cost function ]. During back-
propagation, we will receive a tensor G such that

0



To train the network, we need to compute the derivatives with respect to the

weights in the kernel. To do so, we can use a function
7]
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If this layer is not the bottom layer of the network, we will need to compute

the gradient with respect to V in order to back-propagate the error farther down.

To do so. we can use a function

d
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Deep Learning - An Introduction

Deep learning is a method in artificial intelligence (AI) that teaches
computers to process data in a way that is inspired by the human brain.
Deep learning models can recognize complex patterns in pictures, text,
sounds, and other data to produce accurate insights and predictions.

It has become increasingly popular in recent years due to the advances in
processing power and the availability of large datasets. Because it is
based on artificial neural networks (ANNs) also known as deep neural
networks (DNNs).

These neural networks are inspired by the structure and function of the
human brain’s biological neurons, and they are designed to learn from
large amounts of data.

The key characteristic of Deep Learning is the use of deep neural
networks, which have multiple layers of interconnected nodes. These
networks can learn complex representations of data by discovering
hierarchical patterns and features in the data.

Deep Learning algorithms can automatically learn and improve from data
without the need for manual feature engineering.
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Difference between Machine Learning and Deep Learning:

Machine Learning

Deep Learning

Apply statistical algorithms to learn
the hidden patterns and
relationships in the dataset.

Uses artificial neural network
architecture to learn the hidden
patterns and relationships in the
dataset.

Can work on the smaller amount of
dataset

Requires the larger volume of
dataset compared to machine
learning

Takes less time to train the model.

Takes more time to train the model.

A model is created by relevant
features which are manually
extracted from images to detect an
object in the image.

It can work on the CPU or requires
less computing power as compared
to deep learning.

Relevant features are automatically
extracted from images. It is an end-
to-end learning process.

It requires a high-performance
computer with GPU.

History of Deep Learning

Here is a brief history of some key developments in deep learning:

The history of deep learning can be traced back to 1943, when Walter Pitts and
Warren McCulloch created a computer model based on the neural networks of
the human brain.

They used a combination of algorithms and mathematics they called “threshold
logic” to mimic the thought process. Since that time, Deep Learning has evolved
steadily, with only two significant breaks in its development. Both were tied to
the infamous Artificial Intelligence winters.

The 1960s

Henry J. Kelley is given credit for developing the basics of a continuous Back
Propagation Modelin 1960. In 1962, a simpler version based only on the chain
rule was developed by Stuart Dreyfus. While the concept of back propagation
(the backward propagation of errors for purposes of training) did exist in the
early 1960s, it was clumsy and inefficient, and would not become useful until
1985.

The earliest efforts in developing deep learning algorithms came from Alexey
Grigoryevich Ivakhnenko (developed the Group Method of Data Handling) and
Valentin Grigor'evich Lapa (author of Cybernetics and Forecasting Techniques)
in 1965. They used models with polynomial (complicated equations) activation
functions, that were then analyzed statistically. From each layer, the best
statistically chosen features were then forwarded on to the next layer (a slow,
manual process).



The 1970s

During the 1970’s the first Al winter kicked in, the result of promises that
couldn’t be kept. The impact of this lack of funding limited both DL and Al
research. Fortunately, there were individuals who carried on the research
without funding.

The first “convolutional neural networks” were used by Kunihiko Fukushima.
Fukushima designed neural networks with multiple pooling and convolutional
layers. In 1979, he developed an artificial neural network, called Neocognitron,
which used a hierarchical, multilayered design. This design allowed the
computer the “learn” to recognize visual patterns. The networks resembled
modern versions but were trained with a reinforcement strategy of recurring
activation in multiple layers, which gained strength over time. Additionally,
Fukushima’s design allowed important features to be adjusted manually by
increasing the “weight” of certain connections. Many of the concepts of
Neocognitron continue to be used.

The use of top-down connections and new learning methods have allowed for a
variety of neural networks to be realized. When more than one pattern is
presented at the same time, the Selective Attention Model can separate and
recognize individual patterns by shifting its attention from one to the other.
(The same process many of us use when multitasking). A modern Neocognitron
can not only identify patterns with missing information (for example, an
incomplete number 5), but can also complete the image by adding the missing
information. This could be described as “inference.”

Back propagation, the use of errors in training deep learning models, evolved
significantly in 1970. This was when Seppo Linnainmaa wrote his master’s
thesis, including a FORTRAN code for back propagation.

Unfortunately, the concept was not applied to neural networks until 1985. This
was when Rumelhart, Williams, and Hinton demonstrated back propagation in
a neural network could provide “interesting” distribution representations.
Philosophically, this discovery brought to light the question within cognitive
psychology of whether human understanding relies on symbolic logic
(computationalism) or distributed representations (connectionism).

The 1980s and 90s

In 1989, Yann LeCun provided the first practical demonstration of
backpropagation at Bell Labs. He combined convolutional neural networks with
back propagation onto read “handwritten” digits. This system was eventually
used to read the numbers of handwritten checks.

This time is also when the second Al winter (1985-90s) kicked in, which also
effected research for neural networks and deep learning. Various overly-
optimistic individuals had exaggerated the “immediate” potential of Artificial
Intelligence, breaking expectations and angering investors. The anger was so
intense, the phrase Artificial Intelligence reached pseudoscience status.
Fortunately, some people continued to work on Al and DL, and some significant
advances were made. In 1995, Dana Cortes and Vladimir Vapnik developed the
support vector machine (a system for mapping and recognizing similar data).



LSTM (long short-term memory) for recurrent neural networks was developed
in 1997, by Sepp Hochreiter and Juergen Schmidhuber.

The next significant evolutionary step for deep learning took place in 1999,
when computers started becoming faster at processing data and GPU (graphics
processing units) were developed. Faster processing, with GPUs processing
pictures, increased computational speeds by 1000 times over a 10 year span.
During this time, neural networks began to compete with support vector
machines. While a neural network could be slow compared to a support vector
machine, neural networks offered better results using the same data. Neural
networks also have the advantage of continuing to improve as more training
data is added.

2000-2010

Around the year 2000, The Vanishing Gradient Problem appeared. It was
discovered “features” (lessons) formed in lower layers were not being learned
by the upper layers, because no learning signal reached these layers. This was
not a fundamental problem for all neural networks, just the ones with gradient-
based learning methods. The source of the problem turned out to be certain
activation functions. A number of activation functions condensed their input, in
turn reducing the output range in a somewhat chaotic fashion. This produced
large areas of input mapped over an extremely small range. In these areas of
input, a large change will be reduced to a small change in the output, resulting
in a vanishing gradient. Two solutions used to solve this problem were layer-
by-layer pre-training and the development of long short-term memory.

In 2001, a research report by META Group (now called Gartner) described he
challenges and opportunities of data growth as three-dimensional. The report
described the increasing volume of data and the increasing speed of data as
increasing the range of data sources and types. This was a call to prepare for the
onslaught of Big Data, which was just starting.

In 2009, Fei-Fei Li, an Al professor at Stanford launched ImageNet, assembled a
free database of more than 14 million labeled images. The Internet is, and was,
full of unlabeled images. Labeled images were needed to “train” neural nets.
Professor Li said, “Our vision was that big data would change the way machine
learning works. Data drives learning.”

2011-2020

By 2011, the speed of GPUs had increased significantly, making it possible to
train convolutional neural networks “without” the layer-by-layer pre-training.
With the increased computing speed, it became obvious deep learning had
significant advantages in terms of efficiency and speed. One example is AlexNet,
a convolutional neural network whose architecture won several international
competitions during 2011 and 2012. Rectified linear units were used to
enhance the speed and dropout.



Also in 2012, Google Brain released the results of an unusual project known as
The Cat Experiment. The free-spirited project explored the difficulties of
“unsupervised learning.” Deep learning uses “supervised learning,” meaning the
convolutional neural net is trained using labeled data (think images from
ImageNet). Using unsupervised learning, a convolutional neural net is given
unlabeled data, and is then asked to seek out recurring patterns.

The Cat Experiment used a neural net spread over 1,000 computers. Ten million
“unlabeled” images were taken randomly from YouTube, shown to the system,
and then the training software was allowed to run. At the end of the training,
one neuron in the highest layer was found to respond strongly to the images of
cats. Andrew Ng, the project’s founder said, “We also found a neuron that
responded very strongly to human faces.” Unsupervised learning remains a
significant goal in the field of deep learning.

The Generative Adversarial Neural Network (GAN) was introduced in 2014.
GAN was created by lan Goodfellow. With GAN, two neural networks play
against each other in a game. The goal of the game is for one network to imitate
a photo, and trick its opponent into believing it is real. The opponent is, of
course, looking for flaws. The game is played until the near perfect photo tricks
the opponent. GAN provides a way to perfect a product (and has also begun
being used by scammers).

Probabilistic Theory of Deep Learning

The Probabilistic Theory of Deep Learning (PTDL) is a framework aimed at
understanding and explaining the behavior of deep neural networks (DNNs)
through a probabilistic lens. It seeks to bridge the gap between traditional
machine learning and deep learning by integrating probabilistic models with
deep learning architectures.

The probabilistic neural networks employs deep neural networks that utilize
probabilistic layers which can represent and process uncertainty; the deep
probabilistic models uses probabilistic models that incorporate deep neural
network components which capture complex non-linear stochastic
relationships between the random variables.

The main advantages of probabilistic models are that these can capture the
uncertainties in most real-world applications and provide essential information
for decision making.

Probabilistic deep learning aims to address this limitation by incorporating
uncertainty estimation into deep learning models. This can be achieved through
various approaches:

e Bayesian Neural Networks (BNNs): BNNs treat model parameters as
random variables with prior distributions. By inferring the posterior
distribution of these parameters given the data, BNNs can provide not
only point estimates but also uncertainty estimates for predictions.



Variational Inference: Variational inference is a technique used to
approximate complex posterior distributions with simpler distributions.
In the context of deep learning, variational inference can be used to
approximate the posterior distribution of neural network weights,
enabling uncertainty estimation.

Dropout as Bayesian Approximation: Dropout is a regularization
technique commonly used in deep learning to prevent overfitting.
Interestingly, dropout can also be interpreted as a form of approximate
Bayesian inference, where dropout during training can be seen as
sampling from a distribution over possible neural network architecture.
This can be leveraged to estimate uncertainty in predictions.

Gaussian Processes (GPs): GPs are a powerful probabilistic modeling
tool that can model distributions over functions. By combining GPs with
deep neural networks, researchers have developed methods like Deep
Gaussian Processes (DGPs), which provide uncertainty estimates while
leveraging the representational power of deep learning architectures.

Monte Carlo Dropout: Monte Carlo Dropout extends dropout to the
testing phase by performing multiple stochastic forward passes through
the network with dropout turned on. This allows for the estimation of
predictive uncertainty by observing the variance of predictions across
these passes.

Ensemble Methods: Ensemble methods involve training multiple neural
networks with different initializations or architectures and averaging
their predictions. Ensemble methods naturally provide uncertainty
estimates through the variance of predictions across the ensemble
members.
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Applications of Probabilistic Theory of Deep
Learning

e Medical Diagnosis

e Autonomous Driving

e  Financial Modeling

e Robotics

e Natural Language Processing

Gradient Learning

"Gradient learning" typically refers to the process of updating the
parameters of a model, often a neural network, using gradient descent
optimization algorithms. Gradient descent is a fundamental optimization
technique used to minimize the loss function of a model by iteratively
adjusting its parameters in the direction of steepest descent of the loss
function.

Gradient learning is essential for training neural networks and is the
foundation of many deep learning algorithms.



Variants of gradient descent, such as

1. Stochastic gradient descent (SGD)

2. Mini-batch gradient descent

3. Adaptive learning rate methods like Adam are commonly used in
practice to improve convergence speed and stability during training.
Neural networks are usually trained by using iterative, gradient-based
optimizers. Gradient- based learning draws on the fact that it is generally
much easier to minimize a reasonably smooth, continuous function than
a discrete function.

e The loss function can be minimized by estimating the impact of
small variations of the parameter values on the loss function.
Convex optimization converges starting from any initial
parameters.

¢ Stochastic gradient descent applied to non-convex loss functions
has no such convergence guarantee and is sensitive to the values of
the initial parameters.

¢ For feedforward neural networks, it is important to initialize all
weights to small random values. The biases may be initialized to
zero or to small positive values. The iterative gradient-based
optimization algorithms used to train feedforward networks and
almost all other deep models.

Cost Function
An important aspect of the design of deep neural networks is the
cost function. They are similar to those for parametric models such
as linear models. In most cases, parametric model defines a
distribution p(y/x; 0) and simply use the principle of maximum
likelihood.
The use of cross-entropy between the training data and the
model's prediction’s function. Most modern neural networks are
trained using maximum likelihood.
Cost function is given by
J(J(8) =Y. x,y~pdata Log Pmodel (Y|X)
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The advantage of this approach to cost is that deriving cost from maximum
likelihood removes the burden of designing cost functions for each model.

Desirable property of gradient:

Gradient must be large and predictable enough to serve as a good guide
to the learning algorithm.

Cross entropy and regularization:

A property of cross-entropy cost used for MLE is that, it does not have a
minimum value. For discrete output variables, they cannot represent
probability of zero or one but come arbitrarily close. Logistic regression
is an example.

For real-valued output variables it becomes possible to assign extremely
high density to correct training set outputs, e.g, by learning the variance
parameter of Gaussian output and the resulting cross-entropy
approaches negative infinity.

Learning conditional statistics:

Instead of learning a full probability distribution, we often want to learn
just one conditional statistic of y given x.

Learning a function:

If we have a sufficiently powerful neural network, we can think of it as
being powerful enough to determine any function "f". This function is
limited only by boundedness and continuity.

From this point of view, cost function is a function rather than a function.
View cost as a functional, not a function. We can think of learning as a task
of choosing a function rather than a set of parameters. We can design our
cost function to have its minimum occur at a specific function we desire.
For example, design the cost functional to have its minimum lie on the
function that maps x to the expected value of y given x.

Chain Rule and Backpropagation

The chain rule and backpropagation are fundamental concepts in the
training of neural networks, especially in the context of gradient-based
optimization.

Backpropagation is a training method used for a multi-layer neural
network. [tis also called the generalized delta rule. Itis a gradient descent
method, which minimizes the total squared error of the output computed
by the net.



e The backpropagation algorithm looks for the minimum value of the error
function in weight space using a technique called the delta rule or
gradient descent. The weights that minimize the error function is then
considered to be a solution to the learning problem.

e Backpropagation is a systematic method for training multiple layer ANN.
[t is a generalization of Widrow-Hoff error correction rule. 80 % of ANN
applications uses backpropagation.

e The Figure given below shows backpropagation network.

Here's an explanation of each:
Consider a simple neuron:
e Neuron has a summing junction and activation function.
e Any nonlinear function which differentiable everywhere and increases
everywhere with sum can be used as activation function.
o Examples: Logistic function, arc tangent function, hyperbolic tangent
activation function.
These activation function makes the multilayer network to have greater
representational power than single layer network only when non-linearity is
introduced.
Need of hidden layers:
1. A network with only two layers (input and output) can only represent the
input with whatever representation already exists in the input data.
2. If the data is discontinuous or non-linearly separable, the innate
representation is inconsistent, and the mapping cannot be learned using two
layers (Input and Output).



3. Therefore, hidden layer(s) are used between input and output layers.

e Weights connects unit (neuron) in one layer only to those in the next
higher layer. The output of the unitis scaled by the value of the connecting
weight, and it is fed forward to provide a portion of the activation for the
units in the next higher layer.

e Backpropagation can be applied to an artificial neural network with any
number of hidden layers. The training objective is to adjust the weights
so that the application of a set of inputs produces the desired outputs.

Training procedure:
The network is usually trained with a large number of input-output pairs.
Training Algorithm

1. Generate weights randomly to small random values (both positive and
negative) ensure that the network is not saturated by large values of weights.
2. Choose a training pair from the training set.

3. Apply the input vector to network input.

4. Calculate the network output.

5. Calculate the error, the difference between the network output and the
desired output.

6. Adjust the weights of the network in a way that minimizes this error.

7. Repeat steps 2 - 6 for each pair of input-output in the training set until the
error for the entire system is acceptably low.

Forward pass and backward pass:

e Backpropagation neural network training involves two passes.

1. In the forward pass, the input signals moves forward from the network input
to the output.

2. In the backward pass, the calculated error signals propagate backward
through the network, where they are used to adjust the weights.

3.In the forward pass, the calculation of the output is carried out, layer by layer,
in the forward direction. The output of one layer is the input to the next layer.

In the reverse pass,

a. The weights of the output neuron layer are adjusted first since the target
value of each output neuron is available to guide the adjustment of the
associated weights, using the delta rule.

b. Next, we adjust the weights of the middle layers. As the middle layer neurons
have no target values, it makes the problem complex.



Chain Rule:
The chain rule is a rule from calculus that allows us to compute the derivative of a
composite function. If we have a functiony = f(g(x)), where f and g are

differentiable functions, then the chain rule states that the derivative of y with respect

to x can be expressed as:
dy  dy dg

dr — dg dr
In the context of neural networks, the chain rule allows us to compute the derivative of
the loss function with respect to the parameters (weights and biases) of the network

by decomposing it into smaller derivatives across the layers of the network.

y=g(f(x))

Regularization: Dataset Augmentation

Regularization techniques are essential for preventing overfitting in machine
learning models, including neural networks.

Dataset augmentation is one such technique used to enhance the generalization
ability of models by artificially increasing the size and diversity of the training
dataset.

Augmented
data




Heuristic data augmentation schemes often rely on the composition of a set of
simple transformation functions (TFs) such as rotations and flips (see Figure).
When chosen carefully, data augmentation schemes tuned by human experts
can improve model performance. However, such heuristic strategies in practice
can cause large variances in end model performance and may not produce
augmentations needed for state-of-the-art models.

{Data Augmentation ‘
Dataset generation/ Off-line - - Combining dataset generation
data augmentation Real-time / On- line data and Real-time augmentation
augmentation

Train the Deep
learning model

Data augmentation can be defined as the technique used to improve the
diversity of the data by slightly modifying copies of already existing data or
newly create synthetic data from the existing data. It is used to regularize the
data and it also helps to reduce overfitting. Some of the techniques used for data
augmentation are :

1. Rotation (Range 0-360 degrees)

2. flipping (true or false for horizontal flip and vertical flip)

3. Shear range (image is shifted along x-axis or y-axis)

4. Brightness or Contrast range (image is made lighter or darker)

5. Cropping (resize the image)

6. Scale (image is scaled outward or inward)

7. Saturation (depth or intensity of the image)

Here's how dataset augmentation works within the context of regularization:

Dataset Augmentation:

Dataset augmentation involves applying a variety of transformations to the
original training data to create new, slightly modified samples. These



transformations typically preserve the semantic content of the data while
introducing variability that can help the model learn more robust and invariant
features.

Common transformations include:

e Geometric transformations: Rotation, translation, scaling, cropping,
and flipping of images.

e Color transformations: Adjusting brightness, contrast, saturation, and
hue of images.

e Noise injection: Adding random noise to images or other data samples.

e Random cropping and padding: Extracting random crops or adding
random padding to images.

By applying these transformations to the training data, the dataset is effectively
expanded, providing the model with more diverse examples to learn from. This
helps prevent overfitting by exposing the model to a wider range of variations
in the data distribution.

Regularization Effect:

Dataset augmentation acts as a form of regularization by introducing noise and
variability into the training process. This helps to prevent the model from
memorizing the training examples and encourages it to learn more
generalizable features that are invariant to the transformations applied during
augmentation.

Additionally, dataset augmentation encourages the model to learn features that
are robust to variations commonly encountered in real-world scenarios.

For example, by augmenting images with random rotations and translations,
the model learns to recognize objects from different viewpoints and positions,
leading to improved generalization performance.

Implementation:

Dataset augmentation is typically applied during the training phase, where each
training sample is randomly transformed before being fed into the model for
training. The transformed samples are treated as additional training data,
effectively enlarging the training dataset.

Modern deep learning frameworks often provide built-in support for dataset
augmentation through data preprocessing pipelines or dedicated augmentation
modules. These frameworks allow users to easily specify the desired
transformations and apply them to the training data on-the-fly during training.
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Applying the chain rule

Let’s use the chain rule to calculate the derivative of cost with respect to any
weight in the network. The chain rule will help us identify how much each
weight contributes to our overall error and the direction to update each weight
to reduce our error. Here are the equations we need to make a prediction and
calculate total error, or cost:

Function Formula Derivative
. : Z'(X)=W
Weighted input Z=XW .
Z(W)y=X
T 7 N iy JO 4<€0
ReLLU activation R = max(0,2) R'(Z) = . Z> 0}
Cost function C = %(g — y)? C'(H) = (§—y)

Given a network consisting of a single neuron, total cost could be calculated as:
Cost = C(R(Z(XW)))

Using the chain rule we can easily find the derivative of Cost with respect to weight W.

C'(W)=C'(R)-R(Z)-Z'(W)
=(g—y)-R(2)-X
Noise robustness

In the context of machine learning, and particularly deep learning, refers to the
ability of a model to maintain its performance and make accurate predictions
even when presented with noisy or corrupted input data. Noise in data can arise
from various sources, including sensor errors, transmission errors,
environmental factors, or imperfections in data collection processes.

Here's how noise robustness is addressed in machine learning, particularly in
deep learning:



1. Data Preprocessing:

Noise Removal: In some cases, it's possible to preprocess the data to
remove or reduce noise before feeding it into the model. Techniques such
as denoising filters, signal processing methods, or data cleaning
algorithms can be employed to mitigate noise in the data.

2. Model Architecture:

Robust Architectures: Designing models with architectures that are
inherently robust to noise can help improve noise robustness. For
example, architectures with skip connections or residual connections
(e.g., ResNet) can help propagate information more effectively through
the network, making them more resilient to noise.

Dropout: Dropout regularization, which randomly drops units (along
with their connections) during training, can act as a form of noise
injection. This helps prevent overfitting and encourages the model to
learn more robust features that are less sensitive to noise in the input
data.

3. Data Augmentation:

Augmentation with Noise: As mentioned earlier, dataset augmentation
can help improve noise robustness by exposing the model to a wider
range of data variations, including noisy samples. Augmenting the
training data with artificially added noise can help the model learn to
ignore irrelevant noise while focusing on the relevant signal in the data.

4. Training Strategies:

Adversarial Training: Adversarial training involves training the model
on adversarially perturbed examples generated by adding carefully
crafted noise to the input data. This helps the model learn to be robust
against adversarial attacks, which can be considered as a form of noise.

5. Uncertainty Estimation:

Probabilistic Models: Probabilistic deep learning models, such as
Bayesian neural networks or ensemble methods, can provide uncertainty
estimates along with predictions. These uncertainty estimates can help
the model recognize when it's uncertain about its predictions, which is
particularly useful in the presence of noisy or ambiguous input data.



6. Transfer Learning:

e Pretrained Models: Transfer learning from pretrained models trained
on large datasets can help improve noise robustness. Pretrained models
have learned robust features from vast amounts of data, which can
generalize well even in the presence of noise in the target domain.

Early Stopping, Bagging and Dropout

Early Stopping:

Early stopping is a regularization technique used to prevent overfitting during
the training of machine learning models, including neural networks. The basic
idea is to monitor the performance of the model on a separate validation set
during training. Training is stopped early (i.e., before the model starts to overfit)
when the performance on the validation set starts to degrade.

Specifically, early stopping involves:

e Monitoring Validation Loss: During training, the performance of the
model is evaluated periodically on a validation set. The validation loss (or
other evaluation metric) is calculated to assess the generalization
performance of the model.

e Stopping Criteria: Training is stopped when the validation loss stops
improving or starts to increase for a certain number of epochs. This
prevents the model from overfitting to the training data.

Early stopping helps find the optimal point in the training process where the
model generalizes best to unseen data, thus improving its ability to make
accurate predictions on new samples.

Bagging (Bootstrap Aggregating):

Bagging is an ensemble learning technique that aims to improve the
performance and robustness of machine learning models by combining
predictions from multiple base models. It involves training multiple instances
of the same base model on different subsets of the training data, typically using
bootstrapping (sampling with replacement).

The key steps in bagging are:

¢ Bootstrap Sampling: Randomly sample subsets of the training data with
replacement to create multiple training sets.

e Base Model Training: Train a base model (e.g., decision tree, neural
network) on each bootstrap sample independently.

e Combination of Predictions: Combine the predictions of the base
models by averaging (for regression) or voting (for classification) to
make the final prediction.



Bagging helps reduce variance and improve the stability of predictions by
leveraging the diversity of base models trained on different subsets of the data.

Pseudocode:
1. Given training data (x4, y1), - (Xm, Ym)
2.Fort=1,T:
a. Form bootstrap replicate dataset S, by selecting m random examples
from the training set with replacement.
b. Let h, be the result of training base learning algorithm on St
Output Combined Classifier:
H(x) = Majority(h1 (x) ... ht(x))

Dropout:

Dropout is a regularization technique specifically designed for training neural
networks to prevent overfitting. It involves randomly "dropping out" (i.e,
deactivating) a fraction of neurons during training.

The key aspects of dropout are:

e Random Deactivation: During each training iteration, a fraction of
neurons in the network is randomly set to zero with a probability p,
typically chosen between 0.2 and 0.5.

e Training and Inference: Dropoutis only applied during training. During
inference (i.e., making predictions), all neurons are active, but their
outputs are scaled by the dropout probability p to maintain the expected
output magnitude.

¢ Ensemble Effect: Dropout can be interpreted as training an ensemble of
exponentially many subnetworks, which encourages the network to learn
more robust and generalizable features.

Dropout effectively prevents the co-adaptation of neurons and encourages the
network to learn more distributed representations, leading to improved
generalization performance.

Note: These techniques—early stopping, bagging, and dropout—are powerful
tools for preventing overfitting and improving the generalization performance
of machine learning models, including neural networks. By incorporating these
techniques into the training process, models can become more robust and
reliable, making them better suited for real-world applications.

Batch Normalization

Batch normalization is a popular technique used in deep neural networks to
stabilize and accelerate the training process. It addresses the problem of
internal covariate shift, which refers to the change in the distribution of
network activations during training due to changes in the parameters of earlier
layers.



Here's how batch normalization works:
Mormalization:
During training, for each mini-batch of data fed into the network, batch normalization
normalizes the activations of each layer to have zero mean and unit variance. This is
achieved by subtracting the mean and dividing by the standard deviation computed

over the mini-batch:
;'i" — .i"—l_'a

=
where I is the normalized ocutput, = is the input, & is the mean, 2 is the variance, and
€ is a small constant added for numerical stability.
Scaling and Shifting:
After normalization, the outputs are scaled and shifted by learnable parameters ~+ and
3
y = vyx& + 3
where 1 is the final output.
Training and Inference:
Dwuring training, the mean and variance are computed for each mini-batch and used to
normalize the activations. However, during inference {i.e., making predictions), the
mean and variance are typically computed over the entire training set or a moving

average of the training data.
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The normalization step is as follows:

1. Calculate the mean and variance of the activations for each feature in a mini-
batch.

2. Normalize the activations of each feature by subtracting the mini-batch mean
and dividing by the mini-batch standard deviation.

3. Scale and shift the normalized values using the learnable parameters gamma
and beta, which allow the network to undo the normalization if that is what the
learned behavior requires.



Benefits of Batch Normalization
Batch normalization offers several benefits to the training process of deep
neural networks:

e Improved Optimization: It allows the use of higher learning rates,
speeding up the training process by reducing the careful tuning of
parameters.

e Regularization: It adds a slight noise to the activations, similar to
dropout. This can help to regularize the model and reduce overfitting.

e Reduced Sensitivity to Initialization: It makes the network less
sensitive to the initial starting weights.

o Allows Deeper Networks: By reducing internal covariate shift, batch
normalization allows for the training of deeper networks.

VC Dimension and Neural Nets

The Vapnik-Chervonenkis (VC) dimension is a concept from statistical learning
theory that provides a measure of the capacity or complexity of a hypothesis
space—the set of all possible functions that a learning algorithm can choose
from to fit the training data. In the context of neural networks, the VC dimension
plays an important role in understanding the expressiveness and generalization
ability of different network architectures.

- : |9 B>

3 points shattered 4 points impossible

Shattering set of examples:
Assume a binary classification problem with N examples RD and consider the
set of 2Nl possible dichotomies. For instance, with N = 3 examples, set of all
possible dichotomies is {(000), (001), (010), (011), (100), (101), (110), (111)}.
A class of functions is said to shatter the dataset if, for every possible dichotomy,
there is a function f () that models it.
Consider as an example a finite concept class C = {c1,.,c4} applied to three
instance vectors with the results :
X
Cq

C2

ST Y <
ST Y <



Then:

e ({x1}) ={(0), (1)}

e ({x1,x3}) ={(0,0), (0, 1), (1,0), (1, 1)}
e ({x2,x3}) ={(0,0), (1,1)}

e VCdimension VC(f) is the size of the largest dataset that can be shattered
by the set of function f ().

e Ifthe VC Dimension of (@) is h, then there exists at least one set of h points
that can be shattered by («), but in general it will not be true that every
set of h points can be shattered.

e VCdimension cannot be accurately estimated for non-linear models such
as neural networks. The VC dimension may be infinite requiring an
infinite amount of data.

VC Dimension for Neural Networks
The Vapnik-Chervonenkis (VC) dimension is a concept from statistical learning theory

that quantifies the capacity or complexity of a hypothesis space. Mathematically, the

VC dimension is defined as follows:

Let H be a hypothesis space—a set of functions that can be chosen by a learning
algorithm to fit the training data. The VC dimension dvc(H ) of H is the largest integer
d such that there exists a set of d points that can be shattered by H, and there does

not exist a set of d - 1 points that can be shattered by H.

Formally, a hypothesis space H shatters a set S of points if H can realize all possible
labelings of the points in&. In other words, for every possible binary labeling of the
points in S, there exists a function b = H that correctly classifies the points according

to their labels.

The VC dimension can be expressed as:

dyelH) = max{d :

there exists a set of d points that can be shattered by # }

The VC dimension provides a measure of the capacity of a hypothesis space—the
higher the VC dimension, the greater the capacity of the space to fit the training data.
However, a high VC dimension also increases the risk of overfitting, as the hypothesis

space may have mare flexibility to fit noise in the data.



Unit 5
Recurrent Neural Networks: Introduction - Recursive Neural Networks -
Bidirectional RNNs - Deep Recurrent Networks - Applications: Image
Generation, Image Compression, Natural Language Processing. Complete Auto
encoder, Regularized Autoencoder, Stochastic Encoders and Decoders,
Contractive Encoders.

Recurrent Neural Networks: Introduction

e Recurrent Neural Networks (RNNs) are a type of artificial neural network
designed to effectively deal with sequential data, where the order of
elements matters.

e Unlike feedforward neural networks, where the flow of data is strictly
forward, RNNs have connections that form directed cycles, allowing them
to exhibit dynamic temporal behavior.

e This makes RNNs particularly suitable for tasks such as time series
prediction, natural language processing (NLP), speech recognition, and
more.

e However, if we have data in a sequence such that one data point depends
upon the previous data point, we need to modify the neural network to
incorporate the dependencies between these data points.

e RNNs have the concept of “memory” that helps them store the states or
information of previous inputs to generate the next output of the
sequence.
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A simple RNN has a feedback loop, as shown in the first diagram of the above
figure.

The feedback loop shown in the gray rectangle can be unrolled in three-time
steps to produce the second network of the above figure. Of course, you can vary
the architecture so that the network unrolls k time steps. In the figure, the
following notation is used:



» X; € R is the input at time step t. To keep things simple, we assume that X; is a scalar value with a single

feature. You can extend this idea to a d-dimensional feature vector.

» V; € R is the output of the network at time step t. We can produce multiple outputs in the network, but for

this example, we assume that there is one output.

o h, € R™ vector stores the values of the hidden units/states at time t. This is also called the current
context. m is the number of hidden units. hg vector is initialized to zero.

» W, € R™ are weights associated with inputs in the recurrent layer

o W, € R™*™ are weights associated with hidden units in the recurrent layer

« Wy € R™ are weights associated with hidden units to output units

o« by, € R™is the bias associated with the recurrent layer

« by € R is the bias associated with the feedforward layer

At every time step, we can unfold the network for k time steps to get the output at time stepk + 1. The
unfolded network is very similar to the feedforward neural network. The rectangle in the unfolded network

shows an operation taking place. So, for example, with an activation function f:

hi+1= (X, he, Wy, Wi, br) = (WiXest wihi + by)

The output y at time t is computed as:

}"t = f[ hI' “'\] = f[ “"\ - hl’ 4 b\)
Here, - is the dot product.

Hence, in the feedforward pass of an RNN, the network computes the values of
the hidden units and the output after k time steps. The weights associated with
the network are shared temporally.
Each recurrent layer has two sets of weights:
e One for the input
e Second for the hidden unit
e The last feedforward layer, which computes the final output for the kth
time step, is just like an ordinary layer of a traditional feedforward
network.

Why Recurrent Neural Networks?

Recurrent Neural Networks have unique capacities as opposed to other kinds
of Neural Networks, which open a wide range of possibilities for their users still
also bringing some challenges with them. Then's a rundown of the main
benefits

e It's the only neural network with memory and binary data processing.

e It can plan out several inputs and productions. Unlike other algorithms
that deliver one product for one input, the benefit of RNN is that it can
plot out many to many, one to many, and many to one input and
productions.

Types of Recurrent Neural Networks
There are four types of Recurrent Neural Networks:



e One to One
This type of neural network is understood because the Vanilla Neural
Network. It's used for general machine learning problems, which
contains a single input and one output.

one to one

Single output

Single input

e One to Many
This type of neural network incorporates a single input and multiple
outputs. An example of this is often the image caption.

onae to Mmany

Multiple outputs
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Single input

e Many to One

This RNN takes a sequence of inputs and generates one output. Sentiment
analysis may be a example of this sort of network where a given sentence
are often classified as expressing positive or negative sentiments.



many to one

Single output

Multiple inputs

e Many to Many
This RNN takes a sequence of inputs and generates a sequence of outputs.
artificial intelligence is one among the examples.

many to many

Multiple outputs
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Two Issues of Standard RNNs
1. Vanishing Gradient Problem

e Recurrent Neural Networks enable you to model time-dependent and
sequential data problems, like stock exchange prediction, artificial
intelligence, and text generation. you’ll find, however, RNN is tough to
train due to the gradient problem.



e RNNs suffer from the matter of vanishing gradients. The gradients carry
information utilized in the RNN, and when the gradient becomes too
small, the parameter updates become insignificant. This makes the
training of long data sequences difficult.

Loss of Information through time

ees

X
Backpropagate the error

2. Exploding Gradient Problem

e While training a neural network, if the slope tends to grow exponentially
rather than decaying, this is often called an Exploding Gradient.

e This problem arises when large error gradients accumulate, leading to
very large updates to the neural network model weights during the
training process.

Gradient Problem Solutions

Truncated
Backpropagation

Choosing the right
Activation Function

Gradient Weight Long Short-Term

identity
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Exploding Gradiant Vanishing Gradiont



Now, let’s discuss the foremost popular and efficient thanks to cope with
gradient problems, i.e., Long immediate memory Network (LSTMs).

First, let’'s understand Long-Term Dependencies.

Suppose you wish to predict the last word within the text: “The clouds
are withinthe "

The most obvious answer to the present is that the “sky.” We don’t need
from now on context to predict the last word within the above sentence.
Consider this sentence: “I are staying in Spain for the last 10 years...I can
speak fluent _____

The word you are expecting will rely on the previous couple of words in
context. Here, you would like the context of Spain to predict the last word
within the text, and also the most fitted answer to the present sentence
is “Spanish.” The gap between the relevant information and the point
where it's needed may became very large. LSTMs facilitate to solve this

problem.
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Recursive Neural Networks (ReNNs)

Recursive Neural Networks (ReNNs) are a type of neural network
architecture designed to process structured data, such as hierarchical
data structures or recursive structures. Unlike traditional feedforward or
recurrent neural networks, which operate on fixed-sized input vectors or
sequences, ReNNs operate on tree-like or graph-like structures, allowing
them to model relationships between elements in a hierarchical manner.

Due to their deep tree-like structure, Recursive Neural Networks
can handle hierarchical data. The tree structure means combining child
nodes and producing parent nodes. Each child-parent bond has a weight
matrix, and similar children have the same weights. The number of
children for every node in the tree is fixed to enable it to perform
recursive operations and use the same weights. RvNNs are used when
there's a need to parse an entire sentence.

Tr nalntilata tha narant nadsa'e ranrasantati uis add tha nra Etha vintnhl mstnsnn
[0 calculate the parent node's representation, we add the products of the weight matrices

(W_i) and the children’s representations (C_i) and apply the transformation f:
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\[h = f \left{ \sum_{i=1)"{i=c} W_i C_i \right) \], where c is the number of children.



Difference between Recurrent neural network and recursive
neural networks

Aspect Recurrent Neural Networks Recursive Neural Networks
(RNNs) (ReNNs)
Architecture | Sequential architecture, nodes | Hierarchical or recursive
connected to previous time |architecture, nodes connected in
steps a tree-like or graph-like
structure.
Data Operates on sequential data | Handles structured data with
Structure where order matters hierarchical or recursive
relationships
Training Typically trained using | May involve specialized
backpropagation through time | algorithms for handling the
(BPTT) recursive structure (e.g., BPTS)
Applications | Language modeling, machine | Parsing syntactic or semantic

translation, sentiment analysis,
time series prediction

structures in NLP, analyzing
hierarchical structures in images
or videos, processing hierarchical
data in bioinformatics

Recurrent

i

¥

Recursive

A Recursive Neural Networks is more like a hierarchical network where
there is really no time aspect to the input sequence but the input has to
be processed hierarchically in a tree fashion. Here is an example of how a
recursive neural network looks. It shows the way to learn a parse tree of
a sentence by recursively taking the output of the operation performed
on a smaller chunk of the text.
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The children of each parent node are just a node like that node.
RvNNs comprise a class of architectures that can work with
structured input. The network looks at a series of inputs, each time
at x1, x2... and prints the results of each of these inputs.

This means that the output depends on the number of neurons in
each layer of the network and the number of connections between
them. The simplest form of a RvNNs, the vanilla RNG, resembles a
regular neural network. Each layer contains a loop that allows the
model to transfer the results of previous neurons from another
layer.

Schematically, RvNN layer uses a loop to iterate through a
timestamp sequence while maintaining an internal state that
encodes all the information about that timestamp it has seen so far.

Features of Recursive Neural Networks

A recursive neural network is created in such a way that it includes
applying same set of weights with different graph like structures.
The nodes are traversed in topological order.

This type of network is trained by the reverse mode of automatic
differentiation.

Natural language processing includes a special case of recursive
neural networks.

This recursive neural tensor network includes various
composition functional nodes in the tree.

Challenges:
While Recursive Neural Networks offer advantages for modelling
structured data, they also come with challenges:



e Computational Complexity: Processing recursive structures can be
computationally expensive, especially for deep trees or graphs with many
nodes.

e Data Representation: Representing complex structures in a fixed-
dimensional vector space can be challenging, especially for structures
with varying sizes or irregularities.

e Training Difficulty: Training ReNNs may require specialized algorithms
and techniques to handle the recursive nature of the network and
mitigate issues such as vanishing gradients.

Bidirectional Recurrent Neural Networks (Bi-RNNs)

Bidirectional Recurrent Neural Networks (Bi-RNNs) are an extension of
traditional Recurrent Neural Networks (RNNs) that can capture both past and
future information at each time step. In standard RNNs, the prediction at a given
time step depends only on the past history of the sequence. However, in many
applications, it's beneficial to consider both past and future context to make
better predictions.

The architecture of a Bidirectional RNN involves two separate recurrent layers:

1. One processing the input sequence in the forward direction
2. Another processing the sequence in the backward direction.

Each layer computes hidden states at each time step, considering
information from both past and future context. The final output at each time
step is typically a concatenation of the forward and backward hidden states.

Outputs Yr—1 Ys Yr+1
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Working of Bidirectional Recurrent Neural Network

Inputting a sequence:
A sequence of data points, each represented as a vector with the same
dimensionality, are fed into a BRNN. The sequence might have different lengths.



Dual Processing:

Both the forward and backward directions are used to process the data. On the
basis of the input at that step and the hidden state at step t-1, the hidden state
at time step t is determined in the forward direction. The input at step t and the
hidden state at step t+1 are used to calculate the hidden state at step t in a
reverse way.

Computing the hidden state:

A non-linear activation function on the weighted sum of the input and previous
hidden state is used to calculate the hidden state at each step. This creates a
memory mechanism that enables the network to remember data from earlier
steps in the process.

Determining the output:

A non-linear activation function is used to determine the output at each step
from the weighted sum of the hidden state and a number of output weights. This
output has two options: it can be the final output or input for another layer in
the network.

Training:

The network is trained through a supervised learning approach where the goal
is to minimize the discrepancy between the predicted output and the actual
output. The network adjusts its weights in the input-to-hidden and hidden-to-
output connections during training through backpropagation.

To calculate the output from an RNN unit, we use the following formula:

H, (Forward) = A(X: * Wgo(forward) + H..; (Forward) * Wu (Forward) + by (Forward)
H, (Backward)u= A(X, * Wy (Backward) + H,,; (Backward) * Wyy (Backward) + by (Backward)
where,

A = activation function, W = weight matrix, b = bias

The training of a BRNN is similar to backpropagation through a time
algorithm. BPTT algorithm works as follows:

e Roll out the network and calculate errors at each iteration
e Update weights and roll up the network.

However, because forward and backward passes in a BRNN occur
simultaneously, updating the weights for the two processes may occur at the
same time. This produces inaccurate outcomes. Thus, the following approach is



used to train a BRNN to accommodate forward and backward passes
individually.

Advantages of Bidirectional RNN

Context from both past and future:

With the ability to process sequential input both forward and backward,
BRNNs provide a thorough grasp of the full context of a sequence.
Because of this, BRNNs are effective at tasks like sentiment analysis and
speech recognition.

Enhanced accuracy:
BRNNs frequently yield more precise answers since they take both
historical and upcoming data into account.

Efficient handling of variable-length sequences:

When compared to conventional RNNs, which require padding to have a
constant length, BRNNs are better equipped to handle variable-length
sequences.

Resilience to noise and irrelevant information:

BRNNs may be resistant to noise and irrelevant data that are present in
the data. This is so because both the forward and backward paths offer
useful information that supports the predictions made by the network.

Ability to handle sequential dependencies:
BRNNSs can capture long-term links between sequence pieces, making
them extremely adept at handling complicated sequential dependencies.

Applications of Bidirectional Recurrent Neural Network

Bi-RNNs have been applied to various natural language processing (NLP) tasks,
including:

Sentiment Analysis:
By taking into account both the prior and subsequent context, BRNNs can
be utilized to categorize the sentiment of a particular sentence.

Named Entity Recognition:
By considering the context both before and after the stated thing, BRNNs
can be utilized to identify those entities in a sentence.

Part-of-Speech Tagging:
The classification of words in a phrase into their corresponding parts of
speech, such as nouns, verbs, adjectives, etc., can be done using BRNNs.



e Machine Translation:
BRNNSs can be used in encoder-decoder models for machine translation,
where the decoder creates the target sentence and the encoder analyses
the source sentence in both directions to capture its context.

e Speech Recognition:
When the input voice signal is processed in both directions to capture the
contextual information, BRNNs can be used in automatic speech
recognition systems.

Disadvantages of Bidirectional RNN

e Computational complexity:
Given that they analyze data both forward and backward, BRNNs can be
computationally expensive due to the increased amount of calculations
needed.

e Long training time:
BRNNSs can also take a while to train because there are many parameters
to optimize, especially when using huge datasets.

¢ Difficulty in parallelization:
Due to the requirement for sequential processing in both the forward and
backward directions, BRNNs can be challenging to parallelize.

¢ Overfitting:
BRNNs are prone to overfitting since they include many parameters that
might result in too complicated models, especially when trained on short
datasets.

e Interpretability:
Due to the processing of data in both forward and backward directions,
BRNNs can be tricky to interpret since it can be difficult to comprehend
what the model is doing and how it is producing predictions.

Deep recurrent networks (DRNs)

e Deep recurrent networks (DRNs) are a class of neural networks that
combine the concepts of deep learning and recurrent neural networks
(RNNs).

e RNNsare atype of neural network designed to work with sequential data,
where the output of each step is dependent on the previous steps.



This makes them particularly suitable for tasks like natural language
processing (NLP), time series prediction, and speech recognition.

Deep recurrent networks extend the capabilities of traditional RNNs by
stacking multiple layers of recurrent units, allowing for the creation of
deeper architectures.

Each layer in a DRN passes its output as input to the next layer, enabling
the network to learn hierarchical representations of sequential data.

Deep recurrent networks have been successfully applied to various tasks,
including sequence prediction, language modeling, machine translation,
and speech recognition.

They have demonstrated superior performance compared to shallow
recurrent networks in many cases, especially when dealing with complex
sequential data with long-range dependencies.

There are several types of recurrent units that can be used in deep recurrent
networks, such as:

Vanilla RNNs:

These are the simplest form of recurrent units, where the output is
computed based on the current input and the previous hidden state.
Long Short-Term Memory (LSTM):

LSTMs are a type of recurrent unit that introduces gating mechanisms to
control the flow of information within the network, allowing it to learn
long-range dependencies more effectively and mitigate the vanishing
gradient problem.

Gated Recurrent Units (GRUs):

GRUs are like LSTMs but have a simpler structure with fewer parameters,
making them computationally more efficient.
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Steps to develop a deep RNN application

Developing an end-to-end deep RNN application involves several steps,
including data preparation, model architecture design, training the model, and
deploying it. Here is an example of an end-to-end deep RNN application for
sentiment analysis.



Data preparation:

The first step is to gather and preprocess the data. In this case, we’ll need a
dataset of text reviews labelled with positive or negative sentiment. The text
data needs to be cleaned, tokenized, and converted to the numerical format.
This can be done using libraries like NLTK or spaCy in Python.

Model architecture design:

The next step is to design the deep RNN architecture. We'll need to decide on
the number of layers, number of hidden units, and type of recurrent unit (e.g.
LSTM or GRU). We'll also need to decide how to handle the input and output
sequences, such as using padding or truncation.

Training the model:

Once the architecture is designed, we’ll need to train the model using the
preprocessed data. We'll split the data into training and validation sets and train
the model using an optimization algorithm like stochastic gradient descent.
We'll also need to set hyperparameters like learning rate and batch size.

Evaluating the model:

After training, we’ll evaluate the model’s performance on a separate test set.
We'll use metrics like accuracy, precision, recall, and F1 score to assess the
model’s performance.

Deploying the model:

Finally, we'll deploy the trained model to a production environment, where it
can be used to classify sentiment in real-time. This could involve integrating the
model into a web application or APIL.

Processing Diagram of Deep Recurrent Networks

Input Sequence
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This block diagram provides a high-level overview of the architecture of a
deep recurrent network.




Input Sequence:
This is the sequential data fed into the network. It could be text, time-
series data, audio, etc.

Embedding Layer:

Converts the input sequence into a dense representation suitable for
processing by the recurrent layers. It typically involves mapping each
element of the sequence (e.g., word or data point) to a high-dimensional
vector space.

Recurrent Layers:

Consist of multiple recurrent units stacked together. Each layer processes
the input sequence sequentially, capturing temporal dependencies.
Common types of recurrent units include vanilla RNNs, LSTMs, and GRUs.

Output Layer:

Takes the output from the recurrent layers and produces the final
prediction or output. The structure of this layer depends on the specific
task, such as classification (e.g., softmax activation) or regression (e.g.,
linear activation).

Output (Prediction):

The final output of the network, which could be a sequence of predictions
for each time step or a single prediction for the entire sequence,
depending on the task.

Deep recurrent networks (DRNs) offer several advantages:

Hierarchical Representation Learning:

With multiple layers of recurrent units, DRNs can learn hierarchical
representations of sequential data. Each layer can capture different levels
of abstraction, allowing the network to extract complex features from the
input sequence.

Modeling Long-term Dependencies:

Deep architectures enable DRNs to capture long-range dependencies in
sequential data more effectively. By stacking recurrent layers, the
network can maintain and propagate information over longer sequences,
which is crucial for tasks involving context or memory over extended
periods.

Improved Expressiveness:

Deeper architectures provide more expressive power, allowing DRNs to
learn complex patterns and relationships within sequential data. This
increased expressiveness can lead to better performance on tasks that
require modeling intricate dependencies or understanding subtle
variations in the data.



Better Feature Abstraction:

Each layer in a DRN learns to abstract features from the input sequence,
leading to a hierarchy of representations. This hierarchical feature
extraction can facilitate learning informative and discriminative features,
which are essential for tasks like sequence classification, language
modeling, and machine translation.

Transfer Learning:

Pre-training deep recurrent networks on large-scale datasets for related
tasks (e.g., language modeling) and fine-tuning them for specific tasks
often leads to improved performance. The hierarchical representations
learned during pre-training capture generic features of the data, which
can be beneficial for downstream tasks with limited labeled data.

Disadvantages of Deep recurrent networks (DRNs)

Vanishing/Exploding Gradient Problem:

Training deep recurrent networks can be challenging due to the
vanishing or exploding gradient problem. As gradients are
backpropagated through multiple layers during training, they can
become either extremely small (vanishing) or extremely large
(exploding), which hinders learning and stability. Techniques like
gradient clipping and careful initialization of weights are often necessary
to mitigate this issue.

Computational Complexity:

Deep recurrent networks with multiple layers can be computationally
expensive to train and deploy, especially when dealing with large-scale
datasets or complex architectures. The computational complexity
increases with the number of layers, making it challenging to train deep
models on resource-constrained devices or in real-time applications.

Long Training Time:

Training deep recurrent networks requires significant computational
resources and time, especially when dealing with large datasets and
complex architectures. The training process often involves multiple
iterations over the entire dataset, which can take hours, days, or even
weeks depending on the size of the data and the complexity of the model.

Overfitting:

Deep recurrent networks are prone to overfitting, especially when
dealing with small datasets or overly complex models. With a large
number of parameters, deep models have a high capacity to memorize
noise or irrelevant patterns in the training data, leading to poor
generalization performance on unseen data. Regularization techniques
such as dropout and weight decay are commonly used to prevent
overfitting.



¢ Difficulty in Interpretability:
Understanding the internal workings of deep recurrent networks and
interpreting their decisions can be challenging. With multiple layers of
non-linear transformations, it can be difficult to interpret the learned
representations and understand how the network arrives at a particular
prediction. This lack of interpretability can be a significant drawback in
applications where transparency and interpretability are essential.

Application: Image Generation

e Generating images using recurrent neural networks (RNNs) is an exciting
application that leverages the sequential nature of RNNs to produce
images pixel by pixel.

e While RNNs are not commonly used for image generation due to their
sequential processing nature and the high dimensionality of image data,
they can still be applied for certain types of image generation tasks.

e RNN-based approaches can still be useful in scenarios where sequential
processing or conditioning on external information is desirable.

Architecture diagram which can generate images from text descriptions:
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» Semantic information from the textual description was used as input in
the generator model, which converts characteristic information to pixels
and generates the images.

* This generated image was used as input in the discriminator along with
real/wrong textual descriptions and real sample images from the dataset.

* A sequence of distinct (picture and text) pairings are then provided as
input to the model to meet the goals of the discriminator: input pairs of
real images and real textual descriptions, wrong images and mismatched
textual descriptions, and generated images and real textual descriptions.

» The real photo and real text combinations are provided so that the model
can determine if a particular image and text combination align. An
incorrect picture and real text description indicates that the image does
not match the caption.



The discriminator is trained to identify real and generated images. At the
start of training, the discriminator was good at classification of
real/wrong images. Loss was calculated to improve the weight and to
provide training feedback to the generator and discriminator model.

As soon as the training proceeded, the generator produced more realistic
images and it fooled the discriminator when distinguishing between real
and generated images.

Here's how it can be done:

Text-to-Image Generation:

One common approach to image generation using RNNs is to generate
images conditioned on textual descriptions. In this setup, an RNN, such
as a Long Short-Term Memory (LSTM) network, is used to process the
input text, encoding the semantic information into a fixed-length vector
representation. This vector is then used as a conditioning input to
another network, typically a Generative Adversarial Network (GAN) or a
Variational Autoencoder (VAE), which generates the corresponding
image.

Sequence-to-Sequence Generation:

Another approach is to directly generate images pixel by pixel using
autoregressive models. In this setup, an RNN is trained to predict the next
pixel in the image sequence given the previous pixels. This process is
repeated iteratively until the entire image is generated. Variants of RNNs,
such as PixeIRNN and PixelCNN, have been proposed for this task, where
the model predicts the color value of each pixel conditioned on the
previously generated pixels.

Conditional Image Generation:

RNNs can also be used for conditional image generation, where the
generation process is conditioned on some input information. For
example, the input could be a low-resolution image, a sketch, or a set of
object labels. The RNN processes this input and generates the
corresponding high-resolution image or completes the missing parts of
the input image.

Data Augmentation:

RNNs can be used to generate synthetic images for data augmentation
purposes. By training an RNN to generate realistic images similar to the
training data distribution, additional training samples can be generated
to increase the diversity of the dataset and improve the generalization
performance of image classification or object detection models.

Artistic Style Transfer:

RNNs can be used for artistic style transfer, where the style of one image
is transferred to the content of another image. In this setup, the RNN is
trained to generate an image that matches the content of one image while



incorporating the style features learned from another image. This
process typically involves optimizing a loss function that balances
content preservation and style transfer.

Application: Image Compression

* Image compression is a method to remove spatial redundancy between
adjacent pixels and reconstruct a high-quality image.

» In the past few years, deep learning has gained huge attention from the
research community and produced promising image reconstruction
results.

» Therefore, recent methods focused on developing deeper and more
complex networks, which significantly increased network complexity

» Using recurrent neural networks (RNNs) for image compression is an
innovative application that leverages the sequential processing capability
of RNNs to effectively encode and compress image data.

Architecture Diagram of image compression framework based on
Recurrent Neural Network (RNN)
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In above diagram, there are three modules with two additional novel blocks in
the end-to-end framework, i.e.,, encoder network, analysis block, binarizer,
decoder network, and synthesis block. Image patches are directly given to the
analysis block as an input that generates latent features using the proposed
analysis encoder block. The entire framework architecture is presented in
architecture diagram.



The single iteration of the end-to-end framework is represented in below
Equation.

b; = Bin (Enc; (ry — 1))
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The training process of image compression network is optimized by adopting
the loss at each iteration based on actual weighted and predicted value.
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Here's how RNNs can be applied for image compression:

Sequence-to-Sequence Compression:

In this approach, the input image is divided into a sequence of patches or
blocks. Each block is then sequentially processed by an RNN, such as a
Long Short-Term Memory (LSTM) network or a Gated Recurrent Unit
(GRU). The RNN compresses the information in each block into a fixed-
length vector representation, capturing the essential features of the
image content.

Hierarchical Compression:

Another approach involves using a hierarchical RNN architecture for
compression. In this setup, multiple layers of RNNs are stacked together,
with each layer processing increasingly abstract representations of the
image. The lower layers capture fine-grained details, while the higher
layers capture more global structures and patterns. This hierarchical
representation enables efficient compression of images with varying
levels of detalil.

Conditional Compression:

RNNs can be conditioned on contextual information to improve
compression performance. For example, the compression process can be
conditioned on the image content, image resolution, or specific
compression requirements (e.g., target compression ratio). By
incorporating additional information into the compression model, RNNs
can adapt their encoding strategy to better preserve important features
of the input image.



* Lossy Compression:

RNN-based compression models can be trained to perform lossy
compression, where some information in the input image is discarded to
achieve higher compression ratios. The RNN learns to prioritize
important features while discarding less critical information, resulting in
compact representations of the input images. Techniques such as
quantization and entropy coding can be combined with RNN-based
compression to further improve compression efficiency.

* Learned Compression Algorithms:
Instead of handcrafting compression algorithms, RNNs can be trained to
learn effective compression strategies directly from data. By optimizing
compression performance using techniques such as autoencoders or
reinforcement learning, RNN-based compression models can adapt to the
statistical properties of different types of images and achieve better
compression ratios.

Application: Natural Language Processing

» Natural Language Processing (NLP) using recurrent neural networks
(RNNSs) is a prominent area of research and application.

» RNNs, with their ability to model sequential data, are well-suited for
various NLP tasks that involve understanding and generating natural
language.

= RNNs play a vital role in various NLP tasks by effectively modeling the
sequential nature of natural language and capturing the contextual
dependencies in text data.

» Their versatility and ability to handle sequential data make them a
powerful tool for understanding, generating, and processing natural
language in a wide range of applications.

= RNN are effective for sequential data processing. In RNN computation is
recursively applied to each instance of input sequence from previous
computed results. Recurrent unit is sequentially fed with the sequences
represented by fixed size vector of tokens.

RNN based framework for NLP is shown in Figure below:
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The advantage of RNN is that it can memorize the results of previous
computation and utilize that information in current computation.
So, it is possible to model context dependencies in inputs of arbitrary length



with RNN and proper composition of input can be created.
Mainly RNNs are used in different NLP tasks like,

Natural language generation (e.g. image captioning, machine translation,
visual question answering)

Word - level classification (e.g. Named Entity recognition (NER))
Language modelling

Semantic matching

Sentence-level classification (e.g., sentiment polarity)

Here are some key applications of RNNs in NLP:
v Sequence Modelling:

RNNs excel at sequence modelling tasks, such as language modelling and
text generation. They can be trained to predict the next word in a
sentence given the previous words, capturing the sequential
dependencies in the language. Language models based on RNNs have
been used for tasks like speech recognition, machine translation, and
autocomplete suggestions.

Machine Translation:

RNNs, particularly the sequence-to-sequence (segZ2seq) architecture,
have been widely used for machine translation tasks. In this setup, an
RNN encoder processes the input sentence in the source language, and
another RNN decoder generates the corresponding translation in the
target language. This approach has been extended with attention
mechanisms to handle longer sentences and improve translation quality.
Sentiment Analysis:

RNNs are effective for sentiment analysis tasks, where the goal is to
determine the sentiment or opinion expressed in a piece of text. By
processing the text sequentially and capturing the contextual
information, RNNs can classify text into different sentiment categories
(e.g., positive, negative, neutral). They have been used for sentiment
analysis in social media posts, customer reviews, and news articles.
Named Entity Recognition (NER):

RNNs have been applied to named entity recognition tasks, where the
goal is to identify and classify entities (e.g., persons, organizations,
locations) mentioned in text. By modelling the sequential context of the
text, RNNs can learn to recognize and classify entities based on their
surrounding words and phrases. This is useful in applications like
information extraction and text summarization.

Part-of-Speech Tagging:

RNNs can be used for part-of-speech (POS) tagging, where each word in
a sentence is assigned a grammatical category (e.g., noun, verb,
adjective). By considering the sequential context of the words, RNNs can



learn to predict the POS tags more accurately, even for ambiguous cases.
POS tagging is an essential component in many NLP pipelines and
applications.

v' Text Classification:
RNNs are commonly used for text classification tasks, such as document
categorization, topic modelling, and spam detection. By processing the
text sequentially and capturing the semantic information, RNNs can learn
to classify documents or sentences into different categories based on
their content. They have been used in various domains, including news
categorization, customer support, and email filtering.

v’ Dialogue Systems:
RNNs have been employed in dialogue systems, also known as chatbots
or conversational agents, to generate responses in natural language. By
modelling the sequential interaction between users and the system,
RNNs can generate contextually relevant and coherent responses to user
queries or prompts. Dialogue systems based on RNNs have been used in
virtual assistants, customer service bots, and language learning
applications.

Complete Auto Encoder

v' An autoencoder is a type of artificial neural network used for
unsupervised learning of efficient data representations.

v' Autoencoders emerge as a fascinating subset of neural networks, offering
a unique approach to unsupervised learning.

v" Autoencoders are an adaptable and strong class of architectures for the
dynamic field of deep learning, where neural networks develop
constantly to identify complicated patterns and representations.

v With their ability to learn effective representations of data, these
unsupervised learning models have received considerable attention and
are useful in a wide variety of areas, from image processing to anomaly
detection.

It consists of two main components:

v" An encoder: The encoder compresses the input data into a latent
representation.

v A decoder: The decoder reconstructs the original input from the latent
representation.



Architecture of Complete Auto Encoder
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Basically, autoencoders are approximators for the identity operation;
therefore learning these weights might seem trivial; but by constraining
the parameters (such as number of nodes or number of connections),
interesting representations can be uncovered in the data.

Most real datasets are structured i.e. they have a high degree of local
correlations; usually, the autoencoder can exploit these correlations and
yield compressed representations. However, autoencoders are not
usually used for compression, rather they are used for learning the
representations which are later used for classification i.e. for feature
learning.

Autoencoders can come in various architectures, each serving different
purposes and having different properties.

Here are some types of complete autoencoders:

Vanilla Autoencoder:

A vanilla autoencoder consists of an encoder and a decoder where both
are fully connected neural networks. It aims to learn a compressed
representation of the input data without any specific constraints on the
learned representations.



Sparse Autoencoder:

In a sparse autoencoder, additional constraints are imposed on the
learned representations to encourage sparsity. This can be achieved by
adding a sparsity penalty term to the loss function, such as L1
regularization or the Kullback-Leibler (KL) divergence.

Denoising Autoencoder:

Denoising autoencoders are trained to reconstruct clean data from
corrupted inputs. During training, noise is added to the input data, and
the model is trained to reconstruct the original, noise-free data. This
helps the model learn more robust and informative representations.
Variational Autoencoder (VAE):

VAEs are probabilistic autoencoders that learn a latent variable model of
the data. They aim to capture the underlying probability distribution of
the input data in the latent space and generate new samples by sampling
from this distribution. VAEs consist of an encoder that outputs the
parameters of a probability distribution (e.g., mean and variance) and a
decoder that samples from this distribution to generate reconstructions.
Contractive Autoencoder:

Contractive autoencoders are trained to learn representations that are
robust to small perturbations in the input data. They achieve this by
adding a penalty term to the loss function that penalizes the Frobenius
norm of the Jacobian matrix of the encoder with respect to the input data.
Adversarial Autoencoder (AAE):

AAEs combine autoencoders with adversarial training techniques. They
consist of an encoder-decoder pair trained to reconstruct the input data,
along with a discriminator network that tries to distinguish between the
latent representations learned by the encoder and samples from a prior
distribution.

Convolutional Autoencoder:

Convolutional autoencoders use convolutional layers instead of fully
connected layers in both the encoder and decoder. They are particularly
well-suited for image data and can capture spatial dependencies more
effectively compared to vanilla autoencoders.

Recurrent Autoencoder:

Recurrent autoencoders utilize recurrent neural networks (RNNs) in
either the encoder, decoder, or both. They are useful for sequential data,
such as time series or natural language sequences, and can capture
temporal dependencies in the input data.



Regularized autoencoders

e Regularized autoencoders are a type of autoencoder that incorporates
regularization techniques to improve the quality of learned
representations and prevent overfitting.

e These techniques impose additional constraints on the autoencoder's
training process, encouraging it to learn more robust and generalizable
representations of the input data.

e Regularization helps prevent the autoencoder from memorizing the
training data and capturing noise, resulting in better performance on
unseen data.

e Regularized autoencoders are widely used in various applications,
including dimensionality reduction, feature learning, data denoising, and
anomaly detection.

e By incorporating regularization techniques into the training process,
regularized autoencoders can learn more informative and generalizable
representations of the input data, leading to better performance on
downstream tasks.
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Structure of Regularized Autoencoders

Let's dive into the structural nuances that differentiate regularized
autoencoders from their traditional counterparts.

Neuronal Arrangement:

The arrangement remains like traditional autoencoders, with an encoder and a
decoder. The deviation lies in the incorporation of regularization methods
within the layers.

Activation Functions:

Regularized autoencoders may employ specific activation functions tailored for
regularization, contributing to a more balanced learning process.




Incorporating Regularization Methods:
Regularization methods, such as dropout or L1/L2 regularization, are
integrated into the architecture to curb overfitting.

Some common regularization techniques wused in regularized
autoencoders include:

e L1 and L2 Regularization:
L1 and L2 regularization penalize the magnitude of the weights in the
autoencoder's neural network. By adding a regularization term to the
loss function proportional to either the L1 or L2 norm of the weights,
these techniques encourage sparsity (in the case of L1 regularization) or
small weights (in the case of L2 regularization), helping prevent
overfitting.

e Dropout:
Dropout is a regularization technique that randomly sets a fraction of the
input units to zero during each training iteration. This helps prevent the
autoencoder's neural network from relying too heavily on any individual
input features, forcing it to learn more robust representations.

e Batch Normalization:
Batch normalization normalizes the activations of each layer in the
autoencoder's neural network, helping stabilize and accelerate the
training process. By reducing internal covariate shift, batch
normalization acts as a regularizer, making the autoencoder more
resistant to overfitting.

e Noise Injection:
Noise injection involves adding noise to the input data or the activations
of the autoencoder's hidden layers during training. This helps prevent the
autoencoder from memorizing the training data and encourages it to
learn more generalizable representations.

¢ Contractive Regularization:
Contractive regularization penalizes the Frobenius norm of the Jacobian
matrix of the encoder with respect to the input data. This encourages the
encoder to learn representations that are invariant to small changes in
the input data, making the autoencoder more robust to variations in the
input.



Stochastic Encoders and Decoders

Stochastic encoders and decoders are components of probabilistic
autoencoder models, such as Variational Autoencoders (VAEs).

These components introduce stochasticity into the encoding and
decoding process, enabling the model to learn a probabilistic
representation of the input data distribution.

Stochastic encoders and decoders in VAEs enable various applications,
including generative modelling, data synthesis, and unsupervised
representation learning.

They provide a principled framework for learning complex data
distributions and generating new samples from these distributions.
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Stochastic Encoder:

In a VAE, the encoder network outputs the parameters of a probability
distribution instead of a deterministic encoding. Instead of directly
outputting the latent representation of the input data, the encoder
outputs the mean and variance (or other parameters) of a Gaussian
distribution that represents the distribution of possible latent variables
given the input. The latent variable is then sampled from this distribution
to generate a stochastic representation.

Stochastic Decoder:

Similarly, the decoder network in a VAE accepts a sampled latent variable
as input instead of a deterministic encoding. This sampled latent variable
is generated by sampling from the distribution outputted by the encoder.
The decoder then generates the reconstructed output based on this
sampled latent variable.
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The cost function of VAE is based on log likelihood maximization.
The cost function consists of reconstruction and regularization error
terms:

Cost = Reconstruction Error + Regularization Error

Contractive autoencoders

Contractive autoencoders are a variant of autoencoders that incorporate
a regularization term known as contractive regularization.

The goal of contractive regularization is to encourage the autoencoder's
encoder network to learn a more robust and stable representation of the
input data by penalizing variations in the input space.

In a contractive autoencoder, the contractive regularization term is added
to the loss function during training. This regularization term penalizes
the Frobenius norm of the Jacobian matrix of the encoder's output with
respect to the input data.

Intuitively, this penalizes variations in the input space by encouraging the
encoder to learn representations that are insensitive to small changes in
the input data.



e C(Contractive autoencoder simply targets to learn invariant
representations to unimportant transformations for the given data.

e CAE surpasses results obtained by regularizing autoencoder using
weight decay or by denoising. CAE is a better choice than denoising
autoencoder to learn useful feature extraction.

Mathematically, the contractive regularization term can be expressed as follows:
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Where:

* {)is the contractive regularization term,

* \isthe regularization strength.,

N s the dimensionality of the encoded representation.

h;(x) is the ith element of the encoded representation.

V :h;(z) is the gradient of the ith encoded representation with respect to the input .

r denotes the Frobenius norm.

e During training, the contractive autoencoder is optimized to minimize
the reconstruction error (e.g., mean squared error) while simultaneously
minimizing the contractive regularization term.

e This encourages the encoder to learn representations that capture the
underlying structure of the data while being robust to small
perturbations in the input space.

e Contractive autoencoders have been applied in various domains,
including dimensionality reduction, feature learning, and data denoising.

e They are particularly useful in scenarios where the input data is noisy or
contains small variations, as they encourage the autoencoder to learn
stable and invariant representations of the data.
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The benefits and applications of contractive autoencoders include:

Robustness to Noise: Contractive regularization encourages the
encoder to learn representations that are robust to small variations and
noise in the input data. This makes contractive autoencoders suitable for
tasks involving noisy or corrupted data, such as denoising autoencoding
Improved Generalization: By penalizing variations in the input space,
contractive regularization helps prevent overfitting and improves the
generalization performance of the autoencoder. This allows the model to
learn more generalizable representations of the data that can be applied
to unseen examples.

Feature Learning: Contractive autoencoders can learn informative and
discriminative features from the input data by capturing the underlying
structure of the data distribution. These learned features can be used for
downstream tasks such as classification, clustering, or anomaly
detection.

Dimensionality Reduction: The compact and stable representations
learned by contractive autoencoders can be used for dimensionality
reduction tasks. By projecting high-dimensional data into a lower-
dimensional space while preserving important information, contractive
autoencoders facilitate visualization, data compression, and efficient
storage.

Unsupervised Learning: Contractive autoencoders belong to the class
of unsupervised learning algorithms, as they do not require labelled data
during training. This makes them suitable for tasks where labelled data
is scarce or expensive to obtain, allowing for the extraction of useful
information from large amounts of unlabelled data.
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	What is a Cost Function?
	It is a function that measures the performance of a model for any given data. Cost Function quantifies the error between predicted values and expected values and presents it in the form of a single real number.
	After making a hypothesis with initial parameters, we calculate the Cost function. And with a goal to reduce the cost function, we modify the parameters by using the Gradient descent algorithm over the given data. Here’s the mathematical representatio...
	What is Gradient Descent?
	Gradient descent is an optimization algorithm used in machine learning to minimize the cost function by iteratively adjusting parameters in the direction of the negative gradient, aiming to find the optimal set of parameters.
	The cost function represents the discrepancy between the predicted output of the model and the actual output. The goal of gradient descent is to find the set of parameters that minimizes this discrepancy and improves the model’s performance.
	The algorithm operates by calculating the gradient of the cost function, which indicates the direction and magnitude of steepest ascent. However, since the objective is to minimize the cost function, gradient descent moves in the opposite direction of...
	By iteratively updating the model’s parameters in the negative gradient direction, gradient descent gradually converges towards the optimal set of parameters that yields the lowest cost. The learning rate, a hyperparameter, determines the step size ta...
	Gradient descent can be applied to various machine learning algorithms, including linear regression, logistic regression, neural networks, and support vector machines. It provides a general framework for optimizing models by iteratively refining their...
	Example of Gradient Descent
	Let’s say you are playing a game where the players are at the top of a mountain, and they are asked to reach the lowest point of the mountain. Additionally, they are blindfolded. So, what approach do you think would make you reach the lake?
	Take a moment to think about this before you read on.
	The best way is to observe the ground and find where the land descends. From that position, take a step in the descending direction and iterate this process until we reach the lowest point.
	Finding the lowest point in a hilly landscape. (Source: Fisseha Berhane)
	Gradient descent is an iterative optimization algorithm for finding the local minimum of a function.
	To find the local minimum of a function using gradient descent, we must take steps proportional to the negative of the gradient (move away from the gradient) of the function at the current point. If we take steps proportional to the positive of the gr...
	Gradient descent was originally proposed by CAUCHY in 1847. It is also known as steepest descent.
	Source: Clairvoyant
	The goal of the gradient descent algorithm is to minimize the given function (say cost function). To achieve this goal, it performs two steps iteratively:
	1. Compute the gradient (slope), the first order derivative of the function at that point
	2. Make a step (move) in the direction opposite to the gradient, opposite direction of slope increase from the current point by alpha times the gradient at that point
	Alpha is called Learning rate – a tuning parameter in the optimization process. It decides the length of the steps.
	How Does Gradient Descent Work?
	1. Gradient descent is an optimization algorithm used to minimize the cost function of a model.
	2. The cost function measures how well the model fits the training data and is defined based on the difference between the predicted and actual values.
	3. The gradient of the cost function is the derivative with respect to the model’s parameters and points in the direction of the steepest ascent.
	4. The algorithm starts with an initial set of parameters and updates them in small steps to minimize the cost function.
	5. In each iteration of the algorithm, the gradient of the cost function with respect to each parameter is computed.
	6. The gradient tells us the direction of the steepest ascent, and by moving in the opposite direction, we can find the direction of the steepest descent.
	7. The size of the step is controlled by the learning rate, which determines how quickly the algorithm moves towards the minimum.
	8. The process is repeated until the cost function converges to a minimum, indicating that the model has reached the optimal set of parameters.
	9. There are different variations of gradient descent, including batch gradient descent, stochastic gradient descent, and mini-batch gradient descent, each with its own advantages and limitations.
	10. Efficient implementation of gradient descent is essential for achieving good performance in machine learning tasks. The choice of the learning rate and the number of iterations can significantly impact the performance of the algorithm.
	Types of Gradient Descent
	The choice of gradient descent algorithm depends on the problem at hand and the size of the dataset. Batch gradient descent is suitable for small datasets, while stochastic gradient descent is more suitable for large datasets. Mini-batch gradient desc...
	Batch Gradient Descent
	Batch gradient descent updates the model’s parameters using the gradient of the entire training set. It calculates the average gradient of the cost function for all the training examples and updates the parameters in the opposite direction. Batch grad...
	Stochastic Gradient Descent
	Stochastic gradient descent updates the model’s parameters using the gradient of one training example at a time. It randomly selects a training example, computes the gradient of the cost function for that example, and updates the parameters in the opp...
	Mini-Batch Gradient Descent
	Mini-batch gradient descent updates the model’s parameters using the gradient of a small subset of the training set, known as a mini-batch. It calculates the average gradient of the cost function for the mini-batch and updates the parameters in the op...
	Plotting the Gradient Descent Algorithm
	When we have a single parameter (theta), we can plot the dependent variable cost on the y-axis and theta on the x-axis. If there are two parameters, we can go with a 3-D plot, with cost on one axis and the two parameters (thetas) along the other two a...
	cost along z-axis and parameters(thetas) along x-axis and y-axis (source: Research gate)
	It can also be visualized by using Contours. This shows a 3-D plot in two dimensions with parameters along both axes and the response as a contour. The value of the response increases away from the center and has the same value along with the rings. T...
	Gradient descent using Contour Plot. (source: Coursera )
	Alpha – The Learning Rate
	We have the direction we want to move in, now we must decide the size of the step we must take.
	*It must be chosen carefully to end up with local minima.
	● If the learning rate is too high, we might OVERSHOOT the minima and keep bouncing, without reaching the minima
	● If the learning rate is too small, the training might turn out to be too long
	Source: Coursera
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	4. d) Learning rate is very large, it overshoots and diverges, moves away from the minima, performance decreases on learning
	Source: researchgate
	Note: As the gradient decreases while moving towards the local minima, the size of the step decreases. So, the learning rate (alpha) can be constant over the optimization and need not be varied iteratively.
	Local Minima
	The cost function may consist of many minimum points. The gradient may settle on any one of the minima, which depends on the initial point (i.e initial parameters(theta)) and the learning rate. Therefore, the optimization may converge to different poi...
	Convergence of cost function with different starting points (Source: Gfycat )
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	5. Saddle Points: In high-dimensional spaces, the gradient of the cost function can have saddle points, which can cause gradient descent to get stuck in a plateau instead of converging to a minimum.
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