
 UNIT -1

What is a Cost Function?

It is a function that measures the performance of a model for any given data. Cost Function

quantifies the error between predicted values and expected values and presents it in the form of a

single real number.

After making a hypothesis with initial parameters, we calculate the Cost function. And with a

goal to reduce the cost function, we modify the parameters by using the Gradient descent

algorithm over the given data. Here’s the mathematical representation for it:

What is Gradient Descent?

Gradient descent is an optimization algorithm used in machine learning to minimize the cost

function by iteratively adjusting parameters in the direction of the negative gradient, aiming to

find the optimal set of parameters.

The cost function represents the discrepancy between the predicted output of the model and the

actual output. The goal of gradient descent is to find the set of parameters that minimizes this

discrepancy and improves the model’s performance.

The algorithm operates by calculating the gradient of the cost function, which indicates the

direction and magnitude of steepest ascent. However, since the objective is to minimize the cost

function, gradient descent moves in the opposite direction of the gradient, known as the negative

gradient direction.

By iteratively updating the model’s parameters in the negative gradient direction, gradient

descent gradually converges towards the optimal set of parameters that yields the lowest cost.

https://www.analyticsvidhya.com/blog/2021/02/cost-function-is-no-rocket-science/

The learning rate, a hyperparameter, determines the step size taken in each iteration, influencing

the speed and stability of convergence.

Gradient descent can be applied to various machine learning algorithms, including linear

regression, logistic regression, neural networks, and support vector machines. It provides a

general framework for optimizing models by iteratively refining their parameters based on the

cost function.

Example of Gradient Descent

Let’s say you are playing a game where the players are at the top of a mountain, and they are

asked to reach the lowest point of the mountain. Additionally, they are blindfolded. So, what

approach do you think would make you reach the lake?

Take a moment to think about this before you read on.

The best way is to observe the ground and find where the land descends. From that position, take

a step in the descending direction and iterate this process until we reach the lowest point.

Finding the lowest point in a hilly landscape. (Source: Fisseha Berhane)

Gradient descent is an iterative optimization algorithm for finding the local minimum of a

function.

To find the local minimum of a function using gradient descent, we must take steps proportional

to the negative of the gradient (move away from the gradient) of the function at the current point.

If we take steps proportional to the positive of the gradient (moving towards the gradient), we

will approach a local maximum of the function, and the procedure is called Gradient Ascent.

Gradient descent was originally proposed by CAUCHY in 1847. It is also known as steepest

descent.

Source: Clairvoyant

The goal of the gradient descent algorithm is to minimize the given function (say cost function).

To achieve this goal, it performs two steps iteratively:

1. Compute the gradient (slope), the first order derivative of the function at that point

2. Make a step (move) in the direction opposite to the gradient, opposite direction of

slope increase from the current point by alpha times the gradient at that point

Alpha is called Learning rate – a tuning parameter in the optimization process. It decides the

length of the steps.

How Does Gradient Descent Work?

1. Gradient descent is an optimization algorithm used to minimize the cost function of a

model.

2. The cost function measures how well the model fits the training data and is defined based

on the difference between the predicted and actual values.

3. The gradient of the cost function is the derivative with respect to the model’s parameters

and points in the direction of the steepest ascent.

4. The algorithm starts with an initial set of parameters and updates them in small steps to

minimize the cost function.

5. In each iteration of the algorithm, the gradient of the cost function with respect to each

parameter is computed.

6. The gradient tells us the direction of the steepest ascent, and by moving in the opposite

direction, we can find the direction of the steepest descent.

7. The size of the step is controlled by the learning rate, which determines how quickly the

algorithm moves towards the minimum.

8. The process is repeated until the cost function converges to a minimum, indicating that

the model has reached the optimal set of parameters.

9. There are different variations of gradient descent, including batch gradient descent,

stochastic gradient descent, and mini-batch gradient descent, each with its own advantages and

limitations.

10. Efficient implementation of gradient descent is essential for achieving good performance

in machine learning tasks. The choice of the learning rate and the number of iterations can

significantly impact the performance of the algorithm.

Types of Gradient Descent

The choice of gradient descent algorithm depends on the problem at hand and the size of the

dataset. Batch gradient descent is suitable for small datasets, while stochastic gradient descent is

more suitable for large datasets. Mini-batch gradient descent is a good compromise between the

two and is often used in practice.

Batch Gradient Descent

Batch gradient descent updates the model’s parameters using the gradient of the entire training

set. It calculates the average gradient of the cost function for all the training examples and

updates the parameters in the opposite direction. Batch gradient descent guarantees convergence

to the global minimum, but can be computationally expensive and slow for large datasets.

Stochastic Gradient Descent

Stochastic gradient descent updates the model’s parameters using the gradient of one training

example at a time. It randomly selects a training example, computes the gradient of the cost

function for that example, and updates the parameters in the opposite direction. Stochastic

gradient descent is computationally efficient and can converge faster than batch gradient descent.

However, it can be noisy and may not converge to the global minimum.

Mini-Batch Gradient Descent

Mini-batch gradient descent updates the model’s parameters using the gradient of a small subset

of the training set, known as a mini-batch. It calculates the average gradient of the cost function

for the mini-batch and updates the parameters in the opposite direction. Mini-batch gradient

descent combines the advantages of both batch and stochastic gradient descent, and is the most

commonly used method in practice. It is computationally efficient and less noisy than stochastic

gradient descent, while still being able to converge to a good solution.

Plotting the Gradient Descent Algorithm

When we have a single parameter (theta), we can plot the dependent variable cost on the y-axis

and theta on the x-axis. If there are two parameters, we can go with a 3-D plot, with cost on one

axis and the two parameters (thetas) along the other two axes.

 cost along z-axis and parameters(thetas) along x-axis and y-axis (source: Research gate)

It can also be visualized by using Contours. This shows a 3-D plot in two dimensions with

parameters along both axes and the response as a contour. The value of the response increases

away from the center and has the same value along with the rings. The response is directly

proportional to the distance of a point from the center (along a direction).

Gradient descent using Contour Plot. (source: Coursera)

Alpha – The Learning Rate

We have the direction we want to move in, now we must decide the size of the step we must

take.

*It must be chosen carefully to end up with local minima.

●
 If the learning rate is too high, we might OVERSHOOT the minima and keep bouncing,

without reaching the minima

●
 If the learning rate is too small, the training might turn out to be too long

Source: Coursera

1. a) Learning rate is optimal, model converges to the minimum

2. b) Learning rate is too small, it takes more time but converges to the minimum

3. c) Learning rate is higher than the optimal value, it overshoots but converges (1/C < η

<2/C)

4. d) Learning rate is very large, it overshoots and diverges, moves away from the minima,

performance decreases on learning

Source: researchgate

Note: As the gradient decreases while moving towards the local minima, the size of the step

decreases. So, the learning rate (alpha) can be constant over the optimization and need not be

varied iteratively.

Local Minima

The cost function may consist of many minimum points. The gradient may settle on any one of

the minima, which depends on the initial point (i.e initial parameters(theta)) and the learning

rate. Therefore, the optimization may converge to different points with different starting points

and learning rate.

 Convergence of cost function with different starting points (Source: Gfycat)

Code Implementation of Gradient Descent in Python

 Gradient Descent Algorithm

Challenges of Gradient Descent

While gradient descent is a powerful optimization algorithm, it can also present some challenges

that can affect its performance. Some of these challenges include:

1. Local Optima: Gradient descent can converge to local optima instead of the global

optimum, especially if the cost function has multiple peaks and valleys.

2. Learning Rate Selection: The choice of learning rate can significantly impact the

performance of gradient descent. If the learning rate is too high, the algorithm may overshoot the

minimum, and if it is too low, the algorithm may take too long to converge.

3. Overfitting: Gradient descent can overfit the training data if the model is too complex or

the learning rate is too high. This can lead to poor generalization performance on new data.

4. Convergence Rate: The convergence rate of gradient descent can be slow for large

datasets or high-dimensional spaces, which can make the algorithm computationally expensive.

5. Saddle Points: In high-dimensional spaces, the gradient of the cost function can have

saddle points, which can cause gradient descent to get stuck in a plateau instead of converging to

a minimum.

To overcome these challenges, several variations of gradient descent have been developed, such

as adaptive learning rate methods, momentum-based methods, and second-order methods.

Additionally, choosing the right regularization method, model architecture, and hyperparameters

can also help improve the performance of gradient descent.

NNDL-unit 2 - Notes

Neural Network and Deep Learning (Anna University)

Studocu is not sponsored or endorsed by any college or university

NNDL-unit 2 - Notes

Neural Network and Deep Learning (Anna University)

Studocu is not sponsored or endorsed by any college or university
Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

https://www.studocu.com/in/document/anna-university/neural-network-and-deep-learning/nndl-unit-2-notes/80289000?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=nndl-unit-2-notes
https://www.studocu.com/in/course/anna-university/neural-network-and-deep-learning/6581996?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=nndl-unit-2-notes
https://www.studocu.com/in/document/anna-university/neural-network-and-deep-learning/nndl-unit-2-notes/80289000?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=nndl-unit-2-notes
https://www.studocu.com/in/course/anna-university/neural-network-and-deep-learning/6581996?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=nndl-unit-2-notes

I UNIT 111

Associative Me01ory and
Unsupervised Learning

Networks

Syllabus
Training Algorithms for Pattern Association-A utoassoc iative Memory Network-Heteroassociative
Mem01y Network-Bidir ectional Assoc iative Memo,y (BAM) - Hopfield Netwo rks - Iterati ve
Autoassociative Mem01y Networks-Temporal Assoc iative Mem01y Network - Fixed Weight
Competitive Nets - Kohonen Self - Organi:ing Feature Maps - l earning Vector Quanti: ation -
Counter propagation Networks - Adaptive Resonance Theo,y Nenrnrk.

Contents
2.1 Training Algorithms for Pattern Association

2. 2 Associative Memory Network

2.3 Kohonen Self-Organizing Feature Maps

2.4 Learning Vector Quantization

2.5 Counter Propagation Networks

2. 6 Adaptive Resonance Theory Network

2. 7 Two Marks Questions with Answers

(2 • 1)

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

fll Training Algorithms for Pattern Association

• PJtt.?rn i.,".,IJtl'-'0 is th~ rn,-..~ t'1P.~ .. -n1'.'n:in~ in{'tlh'Ufl'U(l'-llt\'tllS in :l h\-t\'l\)-,ISS\'\'l,ll1, ,,

. • 1 · , ,1· 1t1·, .,n .•t\\l'tl in, ,1\krr\,, ~--111
network archttn:-tUn:", l'r mrut f'ltt-.'nlS l'n) Ill ;ill ~Hl1\'-,.l:o-!--\' ' '- '- ' \ \,

the rJtk·ms wh('n a n~w in;iut f'ltk'rrl is rn'S-.'llk'\f.

• PJttem asStx-i.1til,n k.lITls .:i..,,\',·i.1ti\,ns ~-t\, -.'\.'n input 1'-ltw11s :Uhl l'llrpur palh.'ms. Ir 1$

\\iJely used in disni1'ur.:-J mem\,~-m\xklin~. It is ,,11-.' l,f rh .. - llh'I\' t",:1si'-' '" ,,-1.iyi..'r ll1.'I\\ ,,rls.

• Its archit.:'Cture consists of t\n.> s~ts 0f units. th-.' inrut units :uhl 1h1.' ,,1Hput units. F.idt input

unit conn~·ts tl) e.:ich ('utrut unit , i.1 wi..·i~ht;.'\J '-'l'lllll'\.'tit)(lS. Th"' '-·,,nn1.'\.·ti\,ns :tn.' l'rtl~

allowed from inrut units to (1urru1 units.

• The eft'el:t of a unit l1i in the inrut l.lya ,,n a unit u, in thl' l,utput Lt) a is d .. ·ll·nnincd t,~ th~,

proJuct 0f the acti,·ariL'n 3i of l1i :mJ the ""'ifht l,f thl' l',)(lttlYtit'll fnmt u, hl u,. l'h1.•

actiYation of a unit uJ in the ourrur byt·r is gi, en by : SC~ ll w,, x a,)

• A pattern associJtion c:m l't' tr.1in .. ·J t'-) rcsix,nJ ,,ich a Ct'l1Jin l,uq,ut p:ltk'm "h .. ·n pn.·sclll-.\i

\\ith an input patt.:rn. The Cl'nne1.·tit10 weights l'an l't' aJjusk'\J in l)rd1..·r fl) dt:mg .. • th,'

input'output beha,ior. The le:u-ning rule is what s~-cifil'S nln,· a n('t\\\,rk dwtg('s it \\'t.'ights

for a gi,·en input ·output JssociJril'O.

• The most commonly used le:u-ning rules with r:ittc-rn ass,1'-·iat'-,rs arc ~kbb mk and thl' ddt,1

rule.

f II• Hebb Rule

• Hebb rule is the simplest and most common mcthl)d of Jctcnnining wci~hts fl)f an

associati,·e memory neural net. It can be used wi1h patterns arc rl'prcscnt~J as citht.'r binary

or bipolar ,·ecrors
·

• Hebb's Law stares that if neuron i is near enou(lh to •""c,·1,, n•'ur·'n J. "n i ii
::: "' ·" v .. L rc:p1.'atcl \

participates in its actirntion, the S)napric connection bctw•'•'n 111 ,.. , , t . ·
...... cs1: "o nl'urons 1s

strengthened and neuronj becomes more sensitive to stimuli from neuron i.

• According to Hebb rule, weight ,·ector is found to increase proportionat"I)' t
1

ti i •

.
l K' ('fOl U('(l)f

the mput and learning signal.

• Hebb's Law can be represent in the form two rules :

1. If two neurons on either side· of a connection arc acti\'·:t, ... 1
...... u S)llchronously. thi.:n th1..·

weight of that connection is increased.

2. If ~ 'O neurons on ei~her side of a connection arc acrh·atcd asynd1rnnously. th1.·n till·

weight of that connect10n is decreased.

• Fig. 2.1. I shows Hebbian learning in a ne.ural network.

TECHNICAL PUBLICATIONS® - an up-thrust for k.no-,,..'/edqe
Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

~:.:fw:.:.o_rk_s_a_
nd

_D_ee~p=-L_e_a_rn_in~g~--.:~~-~A~ss~o~c,~·at~iv~e~M~e~m~o~ry~a~n~d~U!!._n~s~up~e~rv~is~e~d_!:L~ea~r!.!.:n,'!.'..·ng~N~et~w'..'.:'.o':..::.rk::::__s

Input signals Output signals

Fig. 2.1.1 Hebbian learning in a neural network

• Using Hebb's Law, we can express the adjustment applied to the weight Wij at iteration P in

the following form :

/!J. Wu(p) = F[y/p), x/p)],

• where F[y/p), xi(p)] is a function of both postsynaptic and presynaptic activities.

• As a special case, we can represent Hebb's law

/!J. Wij(p) = ayi(p) xi(p)

where a is the learning rate parameter.

• This equation is referred to as the activity product rule. It shows how a change in the weight

of the synaptic connection between a pair of neurons is related to a product of the incoming

and outgoing signals.

• Hebbian learning implies that weights can only increase. In other words, Hebb's Law allows

the strength of a connection to increase, but it does not provide a means to decrease the

strength. Thus, repeated application of the input si'gnal may drive the weight wij into

saturation.

• The wu stands for the weight of the connection from neuron j to neuron i. Fig. 2. l .2 shows

Two connected neurons (wij)-

x,
W,(new) = W,(old)+9

Fig. 2.1.2 Two connected neurons

• To resolve this problem, we might impose a limit on the growth of synaptic weights. It can

be done by introducing a non-linear forgetting factor into l lcbb 's Law.

TE CNN/CAL PUBLICA T/ONS® - an up-thrust for knowled9e
Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

Neural Networl<.s and Deep Learning 2-4 Associative Memory and Unsupervised Learning Networks

• Hebbian learning requires no other infonnation than the activities, such as labels or crr()r

signals: it is an unsupervised learning method. Hebbian learning is not a concrete learning

rule, it is a postulate on the fundamental principle of biological learning.

• Forgetting factor (0) specifies the weight decay in a single learning cycle. It usually fa lls in

the interval between O and I. If the forgetting factor is 0, the neural network is capable only

of strengthening its synaptic weights, and as a result, these weights grow towards infinity.

On the other hand, if the forgetting factor is close to I , the network remembers very little of

what it learns. Therefore, a rather small forgetting factor should be chosen, typically between

0.01 and 0.1, to allow only a little ' forgetting' while limiting the weight growth.

• Fig. 2.1.3 shows flow chart of Hebb training algorithm.

Start

Initialize weights

Activate input
x, = s,

n

Activate output
y=t

Weight update
w

1
(new) = w1

(old) + xy

Bias update
b(new) = b(old) + y

Stop

Fig. 2.1.3 Flow chart of Hebb training algorithm

• Generalized Hebbian learning algorithm :

J. Initialization: Set initial synaptic weights and thresholds to small random values, say in

an interval [O, I]. Also assign small positive values to the learning rate parameter a and

forgetting factor 0.

2. Activation : Compute the neuron output at iteration p
n

Y/P) = L x/p) w/ p)- 0i
' fl I

where n is the number of neuron inputs, and OJ is the threshold value of neuron j.

® - an edge

lOMoARcPSD|31606405

,\ ',-.ll:~~~~~~~s mid D«'«'P L t'illl!'L'!J 2 - - • 5 ___ Ass1>c'i<1t1vo Alomory nnd Uns11po1visod L<>nrnm!} No/works

-'· l.t':1rnin~: l 'pdatl' thl'" •i.,l 1 · . -
l 1 s 111 the net\\ tir~

" } I' I I) \\' (p) 1 .\w (J))
II II

"h1..'t\' 1\\ J p) is lhL' \h'i"I I •
• .1

1 lOttn l11H1 al 11l·ral1on p .

.&. lh'r:ahon : lnl'l'L':\SL' ill'nt i l
. ' 1' 11 P 'Y OllL'. go har~ to Sll·p and continue 1111til 1hc synaptic

"l't!.!.hts rl'ad1 tlwir ,.,, .. 1 ly .1 1 •' .. , l -s all' \'a llL'S

• lkbb ruk ran hl' us1.·d for ,a11a ·, • . . . • .
• I 11 ,1ssnu.1tl()n, p:1111..·rn ca1q;on, at1on, pattl'rn classll1cnt1011

:mJ O\t'r a rangl' ,,t ,,tlwr ~lrl'as.

flEJDeltaRule

• An imp1,rtant gl'nerali1ati,,n nf ti , , .. ,
, ll: pu11..plwn t1a111111g algonlhrn was pn.:scnh:d by W1drow

anJ l ll,tl as thl' kast 11 11:•m s iu· . , 1, • •
• • 1 ,11 1.. 1. a111111g prnrcdun; also known as the delta ruk .

• Thl' kamin!! rnk was a,)I, li ·I I ti , ... 1
• t u 1' 11.: ,H aphn- hnl':tr l'll '111l'llt also 1JallllXI Adaline.

• Thl' pl'rccptron karn in,, ru l, u · , · ti , · I · · ·
;:, L s1.:- 11. output ot I ll.: threshold lu11ct1011 for karn1ng. The delta

rule uses the nl't output \\ itlwut further mapping into output values - I or + I.

• Fig. 2.1 A shows :idalinc.

- 1 +1 +1

Output
: +1

-1-i-- t--- ...
. J i

Input
pattern

switches

Gains
Summer

-1•) . o+1
Reference

switch

Fig. 2.1.4 Adaline

Quantizer

• If the input conductances are denoted by wi• where i = 0, I, 2, n, and input and output

signals by x
1
and y, respectively, then the output of the central block is defined to be :

n

y = r w, x, + 0
i-= I

Where 0 = Wo

• In a simple physical implementation this device consists of a set of controllable resistors

connected to a circuit which can sum up currents caused by the input voltage signals.

TECHNICAL PUBLICA T/ONS® - an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

l I'

'' r

'' I r

• l h..· \ktl\ ,\11''11 ,,t \ :- \\1th l\' 'I'\'\ I"' \.'.h h \\ \·1~'11 \\ 1 ,,

•

•

I . I "

Tl l t,. \') \
I'

1 1 1· 1 t ti • , ... ,,, 111•·a11 ,,111:11 l' rt:.: ,~ .. ·lt.t n1!~ t11 .. ·, "' t:11r.:n ;1; ,· '"1ll.\r\'\I \'11,'I' . II,, .I ,,, fl' \'trl'll \l .,... 11; " "
lornini: pnl,·f,iur(' (lr \\ iJnm-lltilT knninl,! ruk.

~1~:r!1 ... ·1t~

' l); , rn~~;t .. '1.i l .. ·.1:-r.ir.; : ll·.1rr.m; 1, n,,t r1..·l1.1nt l'n l'('ntr.ll \·,,ntn1l l,f the lll'I\H1rk.
(.):~:;r.~ l .. •,1rr.1::;: \\ ('!ftt:- .m.~ urJJt~J J!t1.'r rr('~1..·nt.1ti,1n tlf cad1 rattem .

El) Associative Memory Network
• O:"!'".: ,,ft!":.: rr.;;ur: f:. .. ·ti\':-1:-1..'fth(' hJ in is J~~(,·iJll\C mc111l11-y. Lc:iming can be cn1b1,k1 l·J

JS .1 rr,, ... ~s l"'f r:,r.::1r:_; .b:-('-'iJt1,,ns bet\, t.'.:n rd.1t1..'J pJttcms . The a~:-.l)l'iati, e mcm u~ 1,
..:-.. -.:-::r',':--.'J d- .1 .. ·bs:~r 1..'f un:ts "ht.:-h rerre~~nt a simrk n1l,Jd t)f a real bioll)gical neuron

• .\n .t.,",i.1:n.: n:.:::1\.'ry. a!s .. , k.n,,,,n JS cl,ntcnt-..\JJrcs~abk \kmory (CA\\) can h:
~.1=-.:~.:-d r:,r .1, .:1!::;: t.'1 J si1:fk r.;em0~· c~dc ratha th:m using a software k),)p.

• .\.~x-i.1:i, e r.ie:Th.."'ri~s ~:1., irr.;:-kmcnt.:J using net\, t.)rks with or without feedback. Su(h

"" ~,.. ·- .. ,.. ·' °' ·=· ,,.. 'no~·~ "' ,__ , c ~ • n ... ;;;,u....,., , ••.:> ~ - a .1 ~p-t;irust ,.Jr kno\\ /edge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

.
r,, (tr '\J

"h1.'l\'. ti' rar!,!1.'I \IUlplll

1, . .-\1.·tn:1I ,,1111,ut 11fth1.· Adalim.'
r

• Thi.' d1:ri\ ati,,n 11f Fr " ith t\'Spl.'d 111 l.':ll'h weight w, is

()F
_r "11)x h,· - - - \ r - llr . I
l I

• T11 lkl'I\':lSI.' Fl' by gradil'llt descent, the update formula for w, on the P
th

input-output pattern

IS

.\ \\ = I] (Ir - l\,) \

• Till' ddt:1 rnle tril.'s ltl minimize squa1\'d crrnrs. it is also rcforrcd to as the least •~can square

k;1rninl! prol'rdurc or Widrow-lloff karninj! rule.

• Fcaturl.'s of the delta mle arc as fi.lllows:

I. Simplicity

, Distributl.'d learning: Leaming is nnt reliant on central control of the network.

3. Online learning: Weights arc updall·d afkr presentation of each pattern.

fl) Associative Memory Network

• Oni: of the primary functions of the brain is associative memory. Learning can be considered

as a process of forming associations between related patterns. The associative memory i~

composed of a cluster of units which represent a simple model of a real biolllgical neunm.

• An associatin! memory, also known as Content-/\ddressable Memory {C/\M) GIil !1l'

searched for a value in a single memory cycle rather than using a soflwan: loop.

• Associative memories can be implemented using networks with or without fccdh.1,·~ ~th h

TECHNICAL PUBL/CA TIONS® - an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

I NC'fWOl~S 1111d !:?~~p Lo,11_-nin!J 2 • l A N t ks f-lt'.~1!.:'--- - - ssoc:1<1/1vo Mommy nnd Uns11/J<'1v1s11d l <1i1m111y_ !'

. •l1'-·iatin: m:ural 111.:1\,·l,1-ks ar, . I • • · I . • •t 1· 11~~ • ' c u~cl to a:-.soc1atc one set of wl'llH·s \\ 1th a not IL'I sc o
, L'l'll'rs. say input anJ output patterns.

1·1,c ·1im <'fan assm:iativc m•' tll()t·y · t 1 . I , , • · 11, • • '"' is, o prn< ucc the assoc1atL·d output pattern " 1encH:t o c
I• ti , in11ut p·,ttcrns is r d · l1 H.: ' • · app ic lo the neural network. The input pattern may he appltcd Ill the
•twMk either as input or • • · · · I . · 1· 11~ as mitta state and the output pattern 1s obsL·rn:d at the outputs 0

some neurons constituting the network.

• Associative memories belong to class of neural network that learn according lo a certain
recording algorithm Th•'y r•'q ti ' ., · " · • • • · ·t . t : ••·s 111llst · " " · nc m1ormatmn a pnon and their conncct1v1 y m,1 11c-.. ·

ofien need to be formed in advance. Writing into memory prodm:es changes in the neural

interconnections. Reading of the stored info from memory named recall , is a transfonnation
of input signals by the network.

• All memory infom,ation is spatially distributed throughout the network. Associative

memory enables a para lid search within a stored data. The purpose of search is to output one

or all stored items that matches the search argument and retrieve it entirely or partiall y.

• The Fig. 2.2. l shows a block diagram of an associative memory.

-

-
Associative

memory

Fig. 2.2.1 Block diagram of an associative memory

• In the initialization phase of the associative memory no info1111ation is stored; ? because the

info1111ation is represented in the w weights they are all set to zero.

• The advantage of neural associative memories over other pattern storage algorithms like

lookup tables of hash codes is that the memory access can be fault tolerant with respect to

variation of the input pattern.

• In associative memories many associations can be stored at the same time. There are

different schemes of superposition of the memory traces fom1ed by the different

associations. The superposition can be simple linear addition of the synaptic chang~s

required for each association (like in the Hopfield model) or nonlinear.

• The perfo1111ance of neural associative memories is usually measured by a quantity called

info1111ation capacity, that is, the information content that can be learned and retrieved,

divided by the number of synapses required.

TECHNICAL PUBLICA T/ONS® - an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

I
!

A . 1- e Memory and Unsupervised Learning Net

Neural Networks and Deep Learning 2 • B ssoc,a ,v

• An associative memory is a content-addressable stnicture that lmatp~ spc~i lie i11Pu1

t t. It is a system t 1a assoc1ai-:s··
representations to specific output represen a ions. · · t\\o

. t d ti , other can be recalled.
patterns (X, Y) such that when one 1s encoun ere , u.:

• Associative network memory can be static or dynamic.

• Static : networks recall an output response after an input has been applied in one foed.

forward pass and theoretically without dday. They were tenned instantaneous.

• Dynamic : memory networks produce recall as a result of output/input feedback interaction,

which requires time.

• There are two classes of associative memory: auto-associative and hctero-associativc.

• Whether auto- or hetero-associative, the net can associate not only the exact pattern pairs

used in training, but is also able to obtain associations if the input is similar to one on which

it has been trained.

fJj1 Auto-associative Memory

• Auto-associative nehvorks are a special subset of the hetero-associative networks, in which

each vector is associated with itself, i.e. y1 = xi for i= I, ... , m. The function of such networks

is to correct noisy input vectors.

• Fig. 2.2.2 shows auto-associative memory.

• Auto-associative memories are content based memories which can recall a stored sequence

when they are presented with a fragment or a noisy version of it. They are very effective in

de-noising the input or removing interference from the input which makes them a promising

first step in solving the cocktail party problem.

• The simplest version of auto-associative memory is linear associator which is a hvo-1:iyer

feed-forward fully connected neural network where the output is constrncted in a single

feed-foiward computation.

I r "' i
X1 X1

Autoassociative
network

I I

xn \.
xn

Fig. 2.2.2 Auto-associative memory

• Artificial neural networks can be used as associative memories. One of the simplest artificial

neural associative memory is the linear associator. The Hopfield model anJ Bidirccti1111al

Associative Memory (BAM) models are some of the other popular arti ticial neural nct\\ (1tl

models used as associative memories.

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

Networks and Deep Learning 2 - 9 Associative Memory and Unsupervised Loaming Notwork., fflJ Hetero-as~~ciative Memory Network
• J-{etero-associative networks map "m" input vectors x', x2

, ... , xm in n-dimcnsiona\ ~pace to t I 2 m. . i i m output vec ors Y , Y , ... ,y m k-dnnensional space, so that X -> y. · .
• If \I X - Xi 1\

2
< E then x - Yi . This should be achieved by the \earning a\gorithm, but

becomes very hard when the number m of vectors to be learned is too high.
• fig. 2.2.3 shows block diagram of hetero-associative network.

Heteroassociative
network i

---Yk

Fig. 2.2.3 Auto-associative memory

• Fig. 2.2.4 shows the structure of a hetero-associative network without feedback.

Fig. 2.2.4 Hetero-associative network without feedback

. tive network without feedback . 2 2 5 Hetero-assoc1a Fig. · ·

-----;;~::::;:~ ;;;-- -·-. ® -thrust for knowledge -------- T-E-:-CH~N:l-;:CA-;;-L, PUBLICA T/ONS - an up

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

I
l ·
I

f JIJ Tho Hopfiold Not work
. . ,J hyncd rct.w, t 1,I ,,r.1·111,rk, f .1k~ 11,,~;, ·;~11.,::t1·11: ru .::,1,:1 • The llopfitld 111odcl I .. II /. Ill} . C ' .

II
... 1·· I wilh lllilm1priatc wcip,hl<i i11!,l t;ad ,,f L1:11,;1. 1,:,11,,:d

usua y 111111a 11.ct

IN . k (IINN) j4 a rrn,dcl ,,t 1,111" ;,,.·;1,c1:,11·11; tt1f:11i1,r'j, ft,~;, ~ir./': ,..: ,
• I lopficld Ncurn c.two1 · . • -'

I k ·,1 1··c<lh·1l'k4 f,'iu 2.2.f, d1t1 W\; I 11,1,f ,dd rir;f ·11, ,r~ ,,f rl.r,;.1: •.: .i'. i,
ncura nctwor w1 1 c ' · · u 1 •

I hipficld network is created by s11pplyi1,v, 111p1JI d;1t:1 v1:<.,11,r ;. ,,r f1i1'!ur, ,t: .':,•

corresponding to the different <.;la«.!->e4, ·r hcsc pi1llc11n ,ire t.;,lbJ d:1·:·1 r,:,tt,;r,,·;

Unrt 1

i,
·,
~1 ·:

t---w-, .-
1
--0

Unit 2 Unit 3

Fig. 2.2.6 Hopfiold notwork of thrc:o unih

• llopficld model com,i~ts of a ~ingl<.: laycr ,,f pr,,t.c·,,,ing ckrr,u,h •,1,kn; t;:d, v .. ·

connected to every other unit in the network othcr than it'.d f.

• The output of em.:h m:uron is a hi nary nurnhcr in (I, I} . ·1 he "utp 11t H:<..t,1r I') tr.•;

vector, Starting from an initial ~late (given a", the: input vc:c.tr,r), the: t, t.;,1lf; r,f th::: r.,:;t,. , r£

changes from one to another like an autc,mat,111. If the \t,1tc (..(,nvcrgt:\, the rJl',int t,, ·;,fw.· ·

converges is called the attractor.

• In its simplest form, the output function i.., the \ign func..tt<Jn, v. h1d1 yit:ld·, I for t1rg J:-:- : .. .

0 and - I otherwise.

• The connection weight matrix W of this type of network i-.; <;qua re and ,:, rnrnctnc. H . .: ,. - ·.

in the I lopficld model act as both input and output unit,.

• A llopfield network consi~ts of "n" totally coupled unit Lac..h unit 1·, c,,nncc.tt:d tci a!I < •• ••

units except itself. The network is symmetric hccau\c the wcig,ht w,
1

for the uir.r :.:. ·

between unit i and unit j is equal to the weight w,, of the c<,nncttirin frc,m unit J tc, ur,it I r·.
absence of a connection from each unit to itself avoids a permanent f<.:~dbalk <if ih <i..1.:i , ;: .

value.

• llopficl<l networks arc typically U!->c<l for clas, i ficat ion pn,hlcms 1th hmary p;ittun \ lL:

• I lopficl<l model is classified into two categories:

l . Discrete I lopficl<l Model

2. Continuous 1 loplicl<l Model

TECHNICAL PUBLICA TION:f">. an 11r1·ft,rut,t for lmnw/1:•I,;~ ·--·· ·- . -

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

Neural Networks and Deep Learning 2 _ 11
k

--- Associative Memory and Unsupervised Learning Networ s

In both discrete and conti H ·
• nuous opfield network weights trained in a one-shot fashion and

not trained incrementally a d ·
s was one m case of Perceptron and M LP.

• In the discrete Hopfield mod I h . . . · · fu t·
e , t e units use a slightly modified bipolar output nc ion

where the states of the u ·t · • · ·
01 s, 1.e., the output of the umts remam the same If the current state

is equal to some threshold value.

• The continuous Hopfield m d I · · . . • H th units
0 e is Just a generahzat1on of the discrete case. ere, e

use continuous output function such as the sigmoid or hyperbolic tangent function. In the

contmuous Hopfield model, each unit has an associated capacitor Ci and resistance ri that

model the capacitance and resistance of real neuron's cell membrane, respectively.

flll Bidirectional Associative Memory (BAM)

• BAM consists of two layers, x and y. Signals are sent back and forth between both layers

_until an equilibrium is reached. Equilibrium is reached if the x and y vectors no longer

change. Given an x vector the BAM is able to produce the y vector and vice versa.

• BAM consists of bi-directional edges so that information can flow in either direction. Since

the BAM network has bidirectional edges, propagation moves in both directions, first from

one layer to another, and then back to the first layer. Propagation continues until the nodes

are no longer changing values.

• Fig. 2.2. 7 shows BAM network.

• Since the BAM also uses the traditional Hebb's learning rule to build the connection weight

matrix to store the associated pattern pairs, it too has a severely low memory capacity.

y

X

Fig. 2.2. 7 BAM network

• BAM can be classified into two categories :

Second layer

First layer

1. Discrete BAM : The network propagates an input pattern X to the Y layer where the

units in the Y layer will compute their net input.

TECHNICAL PUBLICA T/ONS® - an up-thrust for knowledg e

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

No11ml No/work s and Doop Loaming 2 • 12 As.,oclnl/v e Momory and Unsuporv far,d Lonmin?! 1,,,.,
- ,,,,

2. Conflnuous HAM : The unils use the sigmoid or hyperbolic tangent output fu ri1.,

The 1111i1s in lhc X layer have an exlra cxlernal input Ji , while ~he units in the y 1_",r
'l'j

have an ex Ira external input J
1

for i = I, 2, ... , m and j = I, 2, ... , n. ':r

TIH.·sc cxlra cxlcrnal inputs lead lo a modification in the computation of thc net input 1,1 111
,

units.

f IIJ Difference Between Auto-associative Memory and

Hetero-associative Memory
.

Auto-associative memory Hetero-associativc memory ,_ ___________________ _____
The inputs and output vectors s and t arc the

same

The inputs and output vectors s and t are

different.

J-~-~----------------- -------

Recalls a memory of the same modality as

the one that evoked it

Recalls a memory that is different in character

from the input

1------------------------- -----
A picture of a favorite object might evoke a A particular smell or sound, for example, might

mental image of that object in vivid detail evoke a visual memory of some past event

An auto-associative memory retrieves the

same pattern

-
Hetero-associative memory retrieves the stored

pattern -
Example: color correction, coJor constancy Example: I. Space transfonns : Fourier,

2. Dimensionality reduction : PCA

flJ Kohonen Self-Organizing Feature Maps

• Kohoncn self organizing networks arc also called Kohoncn features ,rnps or topolo~

preserving maps arc used to solve competition based network paradigm for data clustering

• The Kohoncn model provides a topological mapping. It places a fi xed number of inr~·

patterns from the input fayer into a higher-dimensional output or Kohonen layer.

• ~raining in the Kohonen network begins with the winner's neighbourhood of a fairly l.irf•

size. Then, as training proceeds, the neighbourhood size gradually decreases.

• Fig. 2,3. J shows a simple Kohoncn If · ·
. se orgamzmg network with 2 inputs and -19 ,1utrur,

TI1e Jeammg feature map is similar to that of competitive learning networks.

------- ,rE~C;H.;'f.l;-,_1C;~-;L ;PU~'B;L::,c::,1::r,:oN::s®:;--------- --- - -· -
• an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

1 Networks and Deep Leaming 2 · 13 Assocmt,vo Memory and Unsupotvisod Loaming Networks

(a) (b)

Fig. 2.3.1 Simple Kohonen self organizing network

• A similarity measure is selected and the winning unit is considered to be the one with thc

largest activation. For this Kohonen features maps all the weights in a neighborhood

around the winning units are also updated. The neighborhood's size generally decreases

slowly with each iteration.

• Step for how to train a Kohonen self organizing network is as follows :

For n-dimensional input space and m output neurons :

1. Choose random weight vector wi for neuron i, i = 1, ... , m

2. Choose random input x

3. Determine winner neuron k : 11 wk - x 11 = mini 1 1 wi - x 11 (Euclidean distance)

4. Update all weight vectors of all neurons i in the neighborhood of neuron

(k : wi : = wi + ll · (j) (i,k) · (x - w)) (wi is shifted towards x)

5. If convergence criterion met, STOP. Otherwise, narrow neighborhood function and

learning parameter ll and go to (2).

Competitive learning in the Kohonen network

• To illustrate competitive learning, consider the Kohonen network with 100 neurons arranged

in the form of a two-dimensional lattice with 10 rows and 10 columns. The network is

required to classify two-dimensional input vectors - each neuron in the network should

respond only to the input vectors occurring in its region.

• The network is trained with I 000 two-dim~nsional input vectors generated randomly in a

square region in the interval between -I and + 1. The learning rate parameter a is equal to

0.1.

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

2 - 1.4

,

I
I

Fw.. 2.3.2

-: .. ~ ·- ~ - ._•--..- •- .___
-- ~ . ~ I I I I / •

": .. • 1 1 \----....~-1•- r- ·-- - 1

•- ~- .-r-·-:-• ~" T T
.. , '. • - • - • - ~ • --- I \ • - •

I I I • I · - •- •- ~ I
• ,L • - • - • I \ \ ," •

•- •- - •- •- \
.

. I \ , i • - . - •
,, ; .. • - • - • - .-• - · -- I \ l

/ I I / \ - • -

- ~;. •- • •- !- •- ._J_. ___ I I
.. ,: ,~ I I \ I I \ · -- ·

•- •-- •- •--~ •- •- • \ I
- .. ,, '·. I

I
I I / / \ ,--- • - • r--i- r-·j--, ~ i--• ' '

.. .. , , - . - • I-- •- •- •
• - • - • - • ·- • • / I I - - •-- •- ·

ri9 . 2 J J

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

Neural Networks and Deep Learn ing 2 _ 15
:-- Associative Memory and Unsupervised Learning Networks

SJ Learning Vector Quantization

Learnin° Vector Quanti t· (LVQ · · b d
• 0 za ion) 1s adaptive data classification method. It 1s ase on

training data with desired class information.

L VQ uses unsupe · d d · d b · • rvise ata clustenng techniques to preprocesses the data set an ° tam
cluster centers.

• fig. 2.4. l shows the net\vork representation of LVQ.

• Here input dimension is 2 and the input space is divided into six clusters. The first two

clusters belong to class l , while other four clusters belong to class 2.

• THE L VQ learning algorithm involves t\vo steps :

l. An unsupervised learning data clustering method is used to locate several cluster centers

without using the class information.

2. The class information is used to fine tune the cluster centers to minimize the number of

misclassified cases.

• The number of cluster can either be specified a priori or determined via a cluster technique

capable of adaptively adding new clusters when necessary. Once the clusters are obtained,

their classes must be labeled before moving to second step. Such labeling is a achieved by

,·oting method.

learning method :

· Output units

Fig. 2.4.1 LVQ

• The weight vector (w) that is closest to the input vector (x) must be found. If x belongs to

the same class, we move w towards x; otherwise we move w away from the input vector x.

Step I : f nitialize the cluster centers by a clustering method.

Step 2 : Label each cluster by the voting method.

TECHNICAL PUBLICA T/ONS® - an up-thrust for knowledge

•

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

2
_ t6 Associative Memory anu .,,,. __ ,

Neural Networks and Deep Leaming

·
. t x and find k such that 11 x _

• Step J : Randomly select a training mput ,,ec or
'\ I/

is a minimum.
b

• Step 4 : If x and wk belongs to the same class, update wk y

i'.l wk = N (x - Wk)

Otherwise update wk by

i1 wk = - TJ (X - wk)
. · · ached stop. Othenvise ret

Step 5 : If the maximum number of 1terat1ons 1s re '
urn

to step 3.

fD Counter Propagation Networks

• The counter propagation network is a hybrid network. It consists of an outStar network and a

competitive filter network. It was developed in 1986 by Robert Hecht-Nielsen.

• Counter propagation networks multilayer networks based on a combination of input,

clustering and output layers. This network can be used to compress data, to approximate

functions or to associate patterns.

• CPN is an unsupervised winner-take-all competitive learning network.

• The hidden layer is a Kohonen network with unsupervised learning and the output layer is a

Grossberg (outstar) layer fully connected to the hidden layer. The output layer is trained by

the Widrow-Hoff rule.

• The counter propagation network can be applied in a data compression approximation

functions or pattern association.

• Three major components :

I. lnstar : Hidden node with input weights. The instar is a single processing element that

shares its general structure and processing functions with many other processing

· elements

2. Competitive layer: Hid~en layer composed of instars

3. Outstar: A structure ·

• Counter propagation networks training include two stages :

I. Input vectors are clustered. Clusters are formed using dot prod t t · E 1 ·d
uc me nc or uc , ean

norm metrics.

2. Weights from cluster units to outputs units are made to produc th d . d
e e es1re response.

• Counter Propagation Operation : ·

I. Present input to network

2. Calculate output of alJ neurons i~ Kohonen layer

-~------T.T5BC;H.;'N.WiiC.~J1~L~P~UM'B~L~IC.;J1~T.;JO~N;si®>.-:a:-n~up=--=1h_ru_s~t 8.:-k---_: _______ _

,or now/edge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

1 Notworks and Deep Lorirni11g 2 • 17
~ ::.:.:--- --..:...._--.:..:.:.:...-!__~..!.!...- ~A~ss~o~c~in~tiv~e'..!_M~o(!.!_m~o'J_!ry~an~d~U'0_n~s~up~o(!.!_•rv~i~se~dt_!L~e~a!.!_rn1.!!_in~gl_}_N'±e:!_IW~O~r~ks~

3. Ddcnninc winner (nt:uron witl , .
l m<1x1mum output)

4. Set output of winner to I (others to O)

5. Cukulate output vector

• Counter propagation networks arc of two types :

I. Full counter propagation

2. Forward counter propagation

1. full counter-propagation network (CPN).

• The Full CPN allows to produce a correct output even when it is given an input vector that

is partially incomplete or incorrect.

• Full counter-propagation was developed to provide an efficient method of representing a

large number of vector pairs, x: y by adaptively constructing a lookup table.

• It produces an approximation x* : y* based on input of an x vector or input of a Y vector

only, or input of an x:y pair, possibly with some distorted or missing elements in either or

both vectors.

• In first phase, the training vector pairs are used to form clusters using either dot product or

euclidean distance. If dot product is used, normalization is a must.

• This phase of training is called as In star modeled training. The active units here are the

units in the x-input, z-cluster and y-input layers. The winning unit uses standard Kohonen

learning rule for its weigh updation.

• During second phase, the weights are adjusted between the cluster units and output units.

• ln this phase, we can find only the J unit remaining active in the cluster layer.

. • The weights from the winning cluster unit J to the output _units are adjusted, so that vector of

activation of units in the y output layer, y*, is approximation of input vector y; and x * is an

approximation of input vector x.

• The architecture of CPN resembles an instar and outstar model.

• The model which connects the input layers to the hidden layer is called Instar model and the

model which connects the hidden layer to the output layer is called_Outstar model.

• The weights are updated in both the Instar (in first phase) and Outstar model (second

phase). The network is fully interconnected network

2. Forward Counter Propagation Network :

• It may be used if the mapping from x toy is well defined, but the mapping from y to x is not.

In this network, after competition only one unit in that layer will be active and send a signal

to the output layer.

TECHNICAL PUBLICA T/ONS® • an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

A •ative Memory and Unsupervised Learning Net

D L . g 2 • 18 SSOCI ~rk .~
Neural Networks and eep earnm

t. tworks ·
• Possible drawback of counter propaga ion ne ·

. . . twork has the same difficulty associated with train·
l. Trammg a counter propagation ne 1ng

a Kohonen network.
2. Counter propagation networks tend to be larger than back propagation networks. If a

certain number of mappings are to be learned, the middle layer must have that lllany

numbers of neurons.

fl) Adaptive Resonance Theory Network

• Gail Carpenter and Stephen Grossberg (Boston University) developed the Adaptive

Resonance learning model. How can a system retain its previously learned knowledge while

incorporating new information.

• Adaptive resonance architectures are artificial neural networks that are capable of stable

categorization of an arbitrary sequence of unlabeled input patterns in real time. These

architectures are capable of continuous training with non-stationary inputs.

• Some models of Adaptive Resonance Theory are :

l. ARTl - Discrete input.

2. ART2 • Continuous input.

3. ARTMAP • Using two input vectors, transforms the unsupervised ART model into a

supervised one.

• Various others : Fuzzy ART, Fuzzy ARTMAP (F ARTMAP), etc ...

• The p~mary intuition be~ind the ART model is that object identification and recognition

generally occur as a result of the interaction of 'top-down' observer expectations with

'bottom-up' sensory information.

• The basic ART system is an unsupervised learning model. It typically consists of a

comparison field and a recognition field composed of neurons, a vigilance parameter, and a

reset module. However, ART networks are able to grow additional neurons if a new input

cannot be categorized appropriately with the existing neurons.

• ART networks tackle the stability-plasticity dilemma :

I. Plasticity : They can always adapt to unknown inputs if the given input cannot be

classified by existing clusters.

2. Stability : Existing clusters are not deleted by the introduction of new inputs.

3. Problem : Clusters are of fixed size, depending on p.

• Fig. 2.6.l shows ART-1 Network.

TECHNICAL PUBL/CA TIONs® · an up-thrust for knowledge

JiiP"'

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

1 Networks and Deep Learning 2 _ 19 Associative Memo,y and Unsupervised Learning Networks

ART-I networks, which re · b. . .
• . ceive mary input vectors. Bottom-up weights are used to

determine output-layer candid t h
a es t at may best match the current input.

Top-down weights represent th "
• e prototype" for the cluster defined by each ou.tput neuron.

A close match between input d . ·
an prototype ts necessary for categorizing the input.

Output layer

Input layer

Fig. 2.6.1 ART 1 network

• Finding this match can require multiple signal exchanges between the two layers in both

directions until "resonance" is established or a new neuron is added.

• The basic ART model, ART!, is comprised of the following components:

I. The short term memory layer : FI - Short term memory.

2. The recognition layer : F2 - Contains the long term memory of the system.

3. Vigilance Parameter: p - A parameter that controls the generality of the memory. Larger

p means more detailed memories, smaller r produces more general memories.

Types of ART :

Type

ART I

ART2

ART3

Fuzzy ART

Remarks

ft is the simplest variety of ART networks, accepting only binary inputs.

Extends network capabilities to support continuous inputs.

ART 3 builds on ART-2 by simulating rudimentary neurotransmitter

regulation of synaptic activity by incorporating simulated sodium (Na+)

an<l calcium (Ca2+) ion concentrations into the system's equations, which

results in a more physiologically realistic means of partially inhibiting

categories that trigger mismatch resets.

Fuzzy ART implements fuzzy logic into ART's pattern recognition, thus

enhancing generalizability

TECHNICAL PUBLICA T/ONS® - an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

Neural Networks and Deep Learning 2 - 20 Associative Memory and Unsupervised Learning N '1.
.. . . ~ "1

ARTMAP ft is also known as Predictive ART, combmes two slightly llloct·
d I · t 1fied

ART-I or ART-2 units into a supervise earnings ructure where th
. k h e fir

unit takes the input data an~ ~he second ~mt ta _es t e correct output da st

then used to make the mlillmum possible adjustment of the vig•i ta,
• • i anc

parameter in the first unit in order to make the correct class1ficat1on. e

FuzzyARTMAP Fuzzy ARTMAP is merely ARTMAP us~g fuzzy ART units, resultin .
. ffi . g 11)

a corresponding increase m e 1c1ency.

flJ Two Marks Questions with Answers

Q.1 What is recall ?

Ans. : If the input vectors are uncorrelated, the Hebb rule will produce the correct weights and

the response of the net when tested with one of the training vectors will be perfect recall

Q.2 Explain learning vector quantization.

Ans. : L VQ is adaptive data classification method. It is based on training data with desired class

infonnation. L VQ uses unsupervised data clustering techniques to preprocesses the data set and

obtain cluster centers.

Q.3 What is meant by associative memory ?

Ans. : An associative memory can be considered as a memory unit whose stored data can be

iden_tified for access by the content of the data itself rather than by an address or m~mory

location. Associative memory is often referred to as Content Addressable Memory (CAf\f).

Q.4 Define auto associative memory.

Ans. : This is a single layer neural network in which the input training vector and the output

target vectors are the same. The weights arc determined so that the network stores a sd of

patterns. If vector "t" is the same as" s", the net is auto-associative.

Q.S What ls Hebbian learning ?

Ans. : Hebb rule is the simplest and most common method of determining weights for an

associative memory neural net. It can be used with patterns arc represented as either bi1m y or

bipolar vectors.

Q.6 What Is Bidirectional Associative Memory (BAM) ?

Ans. : Bidirectional associative memory first proposed by Bart Kosko, is a hetcro-assol'ia1i,c

network. It associates patterns from one set, set A, to patterns from another set, set B anJ rii:c

versa. Like a Hopficld network, the BAM can generalize and also produce correct outpuls

despite corrupted or incomplete inputs.

TECHNICAL PUBL/CA T/ONS® - an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

. / N,•1,11 111.<: {llld /)PP/I/ r •.1111111,} ,, t 1 1111,1 fir-II'• ''' '~<;
Nt'''''' ,. \V111.1 /1,m Mr ·n11,ry ,1fli11 lw,111., rv,•_ , ,, r•,lf ' ---------==-----~..:._ ______ --,

Q 7 L111t tho prol.Mni i of DAM network .

Sh11,,FL' l, tpa t 11) id 11,l. HAM I hl' n1,1,1111111n 1111111hrr nf ,l'-'-"l 1;1t1n11, '" t,c , 11,rcd 111 tlil'

l\Al\1 :-.llllllld 1101 C\l t'l·d th<: 1111111hl r 1,f 11rnr1111, 111 tlw ,m.ilkr !.,~er

, lnrolll'l.'I l'lll1\L'ffl ' lltl' I lic HAM 111;1y 111,t alv.,t),rrod11ll' tlil' t lil 'l' ' ""'tlll,ltlnll

Q.8 What Is content -addressable memory ?

Ans.:

• A Cl1nh.'11l-addrl '\\,1hh: llll'lllnl y 1, a lypc of rm 111111 Y th.it alln\\', fnr the rct all of d.11.1 h.1,rd

llll the dl' grl'l' or :-. 11111 l.1111y hct,,n 11 1111: 1111rnt p ,tllllll ;111d th l' patll rn , "'"rrd Ill llll'lllPr)

, It rckr s to a mrnH11y Olfan 1;; 1t11111 111 \\hli h the fill ninry ,., ;Ht c,,r d hy ,, ., t(IJJtt nt a,

opp1lSl'd In an c ,pli r ,t add1l' '-" l1~c 111 thl' t1ad1t1on.tl l <1111p11fl r 111c 111nry '-)" tun

I l'IH.:rdur c, tlrn, type or 11ll'lllOI Y ;tllm,, the reLa ll of 111f111111.it1u 11 l1J'-' ,t fltl r ,11lr.d

knowledge of it :-. rnnll'nh

Q.9 What are the delta rule for pattern association ?

Ans.:

• When the input wcton, :ire lrni:arly indi:prndrnt, the delta rule produu ;-, l:Xall -,()Jut111n-,

• Whether the input vectors arc linearly independent or not, the delta rule produlc" a lca-,t

squares solution, i.e., it optimi7e::. for the lowest sum of lea-,t -,quarcd error-,.

Q.10 What is continuous BAM ?

Ans. : Continuous BAM transforms input smoothly and continuou-,ly into output in the range

[O, I] using the logistic sigmoid function as the activation function for all units.

Q.11 What are the delta rule for pattern association ?

Ans.:

• When the input vectors are linearly independent, the delta rule produces exact solution-,.

• Whether the input vectors are linearly independent or not, the delta rule produces a lea~t

squares solution, i.e., it optimizes for the lowest sum of least squared errors.

Q.12 Which are the rules used in Hebb 's law ?

Ans. : Rules :

I. If two neurons on either side of a connection are activated synchronously, then the

weight of that connection is increased.

2. Jf two neurons on either side of a connection are activated asynchronously, then the

weight of that connection is decreased.

TECHNICAL PUBLICATIONS®· an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

I

I

No11rol Notworks and Deep Learning 2- 22 A Socl·ative Memory and Unsupervised Learning Net

s

ation network ?
Q.13 What do you mean counter propag . .

. , k ultilayer networks based on a comb111at1on of inpt
Ans. : Counter propagation netv. or s m It,

. 1
Th's network can be used to compress data, to approxirnai

clustcrmg and output ayers. 1 ·
c

functions or to associate patterns.

Q.14 What Is Hopfield model?

Ans. : The If opficld model is a single-layered recurrent network. Like the associative mc111ory,

it is usually initialized with appropriate weights instead of being trained.

Q.15 Define Self-Organizing Map.

Ans. : The Self-Organizing Map is one of the most popular neural network models. It belongs to

the category of competitive learning networks. The Self-Organizing Map is based 011

unsupervised learning, which means that no human intervention 1s needed during the learning

and that little needs to be known about the characteristics of the input data.

Q.16 What is principle goal of the self-organizing map ?

Ans.: The principal goal of the Self-Organizing Map (SOM) is to transform an incoming signal

pattern of arbitrary dimension into a one - or two-dimensional discrete map and to perform this

transformation adaptively in a topologically ordered fashion.

Q.17 List the stages of the SOM algorithm.

Ans.:

I. Initialization - Choose random values for the initial weight vectors wj.

2. Sampling - Draw a sample training input vector x from the input space.

3. Matching - Find the winning neuron I(x) with weight vector closest to input vector.

~Wji = ll(t) Tjl(xi(t) (xi - wJi)

4. Updating - Apply the weight update equation

5. Continuation - Keep returning to step 2 until the feature map stops changing.

Q.18 Explain an essential ingredients and parameters of the SOM algorithm.

Ans.: An essential ingredients and parameters of the SOM algorithm are as follows:

I. Continuous input space of activation patterns that are generated in accordance with a

certain probability distribution;

2. Topology of the network in the fonn of a lattice of neurons, which defines a disc;ete

output space;

3. Time - varying neighborhood function hj i(x)(n) that is defined d · ·
, aroun a wmnmg

neuron i(x);

4. Learning - rate parameter that starts at an initial value and then d d 11 · I
. ecreases gra ua y wt t 1

ttme, but never goes to zero.

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

a 19 How does coun ter -prop.:tgation n t .
· o s are tr;un('d ?

•ns .: C1111111l·r-p111p,1t'.,1t1,1n 1w1-, ,Ill" Ir 1111 • 1 ,.. • ll Ill l\\11 '-1.11.'t'\
t I 11'I , 1:-tfl' I hr 111p11t , t· 1 , 1 • I 1

l '" ,Ill' l 11,h'rld I hl·, h1,h'r, 1h.1l .11,· t,111111·d 111.I) hl• '-1""
llll r1tlK·r tht· d11t pr,,d11 l I rnrti, 11 . 1 1 l 11r ll 11, 11k.111 11111111 111t' l111

., Sl·n111d ,t.tfr . l lw "r1 •I i t I t
• · 1' r,,rn th' l hhh'r 11111h i., thl· 1, 11 q,11t 11111h ,Il l' .1d.1p1,·, h 1

p111,l111·l· tlw dl· ,11 1·d fl•,p, ,11,l,

Q.20 List the possible drawback of counter -propagation nctwo1 ks

Ans. :

• T1ai11111g a n 11111tn -p1,1p.1~.1111111 lh'l\\1•11.. h." th1· ,.1111,· d1ll111111, ., ... ,,,, i.11,·d "i lh 11.11111111'. a
K11hn11.:n 1wt" 111 I..

• (\ 11111tl'r•('l'\lpaf.t llllll lll'l\\ 1111,., knd hi h,· l.11r,·1 lh.111 1,.,,~p1,111.1r, 11 1t111 lll'l\\\11~' II ,I

r.:rtain 1111111h1·r 11r 111,lp('III~, ,Ill' 1\1 b,· k,llllt'1I. th,· 1111ddlt· l.l\l'I 11111,1 h,l\ l' th.ti 111,111y
tlllllllWr ,,r lll' llr1ll1\,

Q.21 How forward-only differs form full counter -propagation n<'IS ?

Ans.:

• ln full .:11untl't'•('l\'1':1g.1t11111. ,1111~ lhl· \. \\'1 ·11,,, 111 t,11111 th,: 1 lu,1l'1, 1111 1h.: Knl11111l'II 11111h
during th.: tir.-t :--t.1g.: ,,r tr.1111111~.

• Th.: 11riginal prl':--l'lll.1t1,111 ,,r t~1n, .1rd-111tl) l'1lll llk r-p1 np,1~.111 ,111 lh l'd thl' I 11d1dran

dist:HKe bet\\ l'l'll th.: 111p111 , l't'l11r and thl· "ei ght , l'l·tor for 1hr KolhHIL'll 111111.

Q.22 What is forward only counter-propagation ?

Ans.:

• Is a simplitiL·d, ersi011 of 1hr full rnunk·rpwpagati,,n

• Arc intcndrd to appru, imat.:) = ll \) t1.111l·ti1111 that is not lll't'l':--sarily imertibk .

• It ,my he u:-ed if 1he mapping from , tl1 y is well defined. but th.: 111:1pping from y t0 , i:-.

not.

Q.23 Define plasticity.

Ans.: The ability of a net to resplmd 1L1 k :1m a nrw pallrm L'qu:1lly well at any stage of karnm g

is called plasticity.

Q.24 List the components of ART1.

Ans. : Components are as follows :

I. The short km1 memory byrr tFI)

, The recognition [3ycr (F2) : It contains the long tmn mrmory of the system.

3. Vigilance Parameter (p) : A p:ir:1meter th:it controls the generality of the memory.

Larger p means more dctaikd memories. smaller p produces more general memories.

TECHNICAL PUBLICA T/ONS® • an up-thrust for knowledge

Downloaded by MONICA GK (monica.gk@aalimec.ac.in)

lOMoARcPSD|31606405

UNIT III THIRD-GENERATION NEURAL NETWORKS 6

Spiking Neural Networks-Convolutional Neural Networks-Deep Learning Neural Networks-
Extreme Learning Machine Model-Convolutional Neural Networks: The Convolution
Operation – Motivation – Pooling – Variants of the basic Convolution Function – Structured
Outputs – Data Types – Efficient Convolution Algorithms – Neuroscientific Basis –
Applications: Computer Vision, Image Generation, Image Compression.

Spiking Neural Networks

What is Spiking Neural Network (SNN)?

Artificial neural networks that closely mimic natural neural networks are known as spiking

neural networks (SNNs). In addition to neuronal and synaptic status, SNNs incorporate time into

their working model. The idea is that neurons in the SNN do not transmit information at the end

of each propagation cycle (as they do in traditional multi-layer perceptron networks), but only

when a membrane potential – a neuron’s intrinsic quality related to its membrane electrical

charge – reaches a certain value, known as the threshold.

The neuron fires when the membrane potential hits the threshold, sending a signal to neighboring

neurons, which increase or decrease their potentials in response to the signal. A spiking neuron

model is a neuron model that fires at the moment of threshold crossing.

SNN with connections and Biological Neuron

Artificial neurons, despite their striking resemblance to biological neurons, do not behave in the

same way. Biological and artificial NNs differ fundamentally in the following ways:

https://analyticsindiamag.com/6-types-of-artificial-neural-networks-currently-being-used-in-todays-technology/
https://www.researchgate.net/figure/A-Spiking-Neural-Networks-and-their-connections-versus-B-Biological-neurons-taken-from_fig2_330926855

 Structure in general
 Computations in the brain
 In comparison to the brain, learning is a rule.

Alan Hodgkin and Andrew Huxley created the first scientific model of a Spiking Neural

Network in 1952. The model characterized the initialization and propagation of action potentials

in biological neurons. Biological neurons, on the other hand, do not transfer impulses directly. In

order to communicate, chemicals called neurotransmitters must be exchanged in the synaptic

gap.

How Does Spiking Neural Network Work?

Key Concepts

What distinguishes a traditional ANN from an SNN is the information propagation approach.

SNN aspires to be as close to a biological neural network as feasible. As a result, rather than

working with continually changing time values as ANN does, SNN works with discrete events

that happen at defined times. SNN takes a set of spikes as input and produces a set of spikes as

output (a series of spikes is usually referred to as spike trains).

The general idea is as;

 Each neuron has a value that is equivalent to the electrical potential of biological neurons at any
given time.

 The value of a neuron can change according to its mathematical model; for example, if a neuron
gets a spike from an upstream neuron, its value may rise or fall.

 If a neuron’s value surpasses a certain threshold, the neuron will send a single impulse to each
downstream neuron connected to the first one, and the neuron’s value will immediately drop
below its average.

 As a result, the neuron will go through a refractory period similar to that of a biological neuron.
The neuron’s value will gradually return to its average over time.

Spike Based Neural Codes

Artificial spiking neural networks are designed to do neural computation. This necessitates that

neural spiking is given meaning: the variables important to the computation must be defined in

terms of the spikes with which spiking neurons communicate. A variety of neuronal information

encodings have been proposed based on biological knowledge:

 Binary Coding:

Binary coding is an all-or-nothing encoding in which a neuron is either active or inactive within

a specific time interval, firing one or more spikes throughout that time frame. The finding that

physiological neurons tend to activate when they receive input (a sensory stimulus such as light

or external electrical inputs) encouraged this encoding.

 Rate Coding:

Only the rate of spikes in an interval is employed as a metric for the information communicated

in rate coding, which is an abstraction from the timed nature of spikes. The fact that

physiological neurons fire more frequently for stronger (sensory or artificial) stimuli motivates

rate encoding.

 Fully Temporal Codes

The encoding of a fully temporal code is dependent on the precise timing of all spikes. Evidence

from neuroscience suggests that spike-timing can be incredibly precise and repeatable. Timings

are related to a certain (internal or external) event in a fully temporal code (such as the onset of a

stimulus or spike of a reference neuron).

 Latency Coding

The timing of spikes is used in latency coding, but not the number of spikes. The latency

between a specific (internal or external) event and the first spike is used to encode information.

This is based on the finding that significant sensory events cause upstream neurons to spike

earlier.

SNN Architecture

Spiking neurons and linking synapses are described by configurable scalar weights in an SNN

architecture. The analogue input data is encoded into the spike trains using either a rate-based

technique, some sort of temporal coding or population coding as the initial stage in building an

SNN.

A biological neuron in the brain (and a simulated spiking neuron) gets synaptic inputs from other

neurons in the neural network, as previously explained. Both action potential production and

network dynamics are present in biological brain networks.

The network dynamics of artificial SNNs are much simplified as compared to actual biological

networks. It is useful in this context to suppose that the modelled spiking neurons have pure

threshold dynamics (as opposed to refractoriness, hysteresis, resonance dynamics, or post-

inhibitory rebound features).

When the membrane potential of postsynaptic neurons reaches a threshold, the activity of

presynaptic neurons affects the membrane potential of postsynaptic neurons, resulting in an

action potential or spike.

Learning Rules in SNN’s

Learning is achieved in practically all ANNs, spiking or non-spiking, by altering scalar-valued

synaptic weights. Spiking allows for the replication of a form of bio-plausible learning rule that

is not possible in non-spiking networks. Many variations of this learning rule have been

uncovered by neuroscientists under the umbrella term spike-timing-dependent plasticity (STDP).

Its main feature is that the weight (synaptic efficacy) connecting a pre-and post-synaptic neuron

is altered based on their relative spike times within tens of millisecond time intervals. The weight

adjustment is based on information that is both local to the synapse and local in time. The next

subsections cover both unsupervised and supervised learning techniques in SNNs.

Application of Spiking Neural Networks

In theory, SNNs can be used in the same applications as standard ANNs. SNNs can also

stimulate the central nervous systems of biological animals, such as an insect seeking food in an

unfamiliar environment. They can be used to examine the operation of biological brain networks

due to their realism.

Advantages and Disadvantages of SNN

Advantages

 SNN is a dynamic system. As a result, it excels in dynamic processes like speech and dynamic
picture identification.

 When an SNN is already working, it can still train.
 To train an SNN, you simply need to train the output neurons.
 Traditional ANNs often have more neurons than SNNs; however, SNNs typically have fewer

neurons.
 Because the neurons send impulses rather than a continuous value, SNNs can work incredibly

quickly.
 Because they leverage the temporal presentation of information, SNNs have boosted

information processing productivity and noise immunity.

Disadvantages

 SNNs are difficult to train.
 As of now, there is no learning algorithm built expressly for this task.

 Building a small SNN is impracticable.

Convolutional Neural Networks

What is a Neural Network?

Neural networks are modeled after our brains. There are individual nodes that form the layers in

the network, just like the neurons in our brains connect different areas.

Neural network with multiple hidden layers. Each layer has multiple nodes.

The inputs to nodes in a single layer will have a weight assigned to them that changes the effect

that parameter has on the overall prediction result. Since the weights are assigned on the links

between nodes, each node maybe influenced by multiple weights.

The neural network takes all of the training data in the input layer. Then it passes the data

through the hidden layers, transforming the values based on the weights at each node. Finally it

returns a value in the output layer.

It can take some time to properly tune a neural network to get consistent, reliable results. Testing

and training your neural network is a balancing process between deciding what features are the

most important to your model.

What is Convolutional Neural Network?

A convolutional neural network is a feed-forward neural network that is generally used to

analyze visual images by processing data with grid-like topology. It’s also known as a ConvNet.

A convolutional neural network is used to detect and classify objects in an image.

Below is a neural network that identifies two types of flowers: Orchid and Rose.

https://www.simplilearn.com/tutorials/deep-learning-tutorial/neural-network

In CNN, every image is represented in the form of an array of pixel values.

The convolution operation forms the basis of any convolutional neural network. Let’s understand

the convolution operation using two matrices, a and b, of 1 dimension.

a = [5,3,7,5,9,7]

b = [1,2,3]

In convolution operation, the arrays are multiplied element-wise, and the product is summed to

create a new array, which represents a*b.

The first three elements of the matrix a are multiplied with the elements of matrix b. The product

is summed to get the result.

The next three elements from the matrix a are multiplied by the elements in matrix b, and the

product is summed up.

This process continues until the convolution operation is complete.

How Does CNN Recognize Images?

Consider the following images:

The boxes that are colored represent a pixel value of 1, and 0 if not colored.

When you press backslash (\), the below image gets processed.

When you press forward-slash (/), the below image is processed:

Here is another example to depict how CNN recognizes an image:

As you can see from the above diagram, only those values are lit that have a value of 1.

Layers in a Convolutional Neural Network

A convolution neural network has multiple hidden layers that help in extracting information from

an image. The four important layers in CNN are:

1. Convolution layer
2. ReLU layer
3. Pooling layer
4. Fully connected layer

Convolution Layer

This is the first step in the process of extracting valuable features from an image. A convolution

layer has several filters that perform the convolution operation. Every image is considered as a

matrix of pixel values.

Consider the following 5x5 image whose pixel values are either 0 or 1. There’s also a filter

matrix with a dimension of 3x3. Slide the filter matrix over the image and compute the dot

product to get the convolved feature matrix.

ReLU layer

ReLU stands for the rectified linear unit. Once the feature maps are extracted, the next step is to

move them to a ReLU layer.

ReLU performs an element-wise operation and sets all the negative pixels to 0. It introduces non-

linearity to the network, and the generated output is a rectified feature map. Below is the graph

of a ReLU function:

The original image is scanned with multiple convolutions and ReLU layers for locating the

features.

Pooling Layer

Pooling is a down-sampling operation that reduces the dimensionality of the feature map. The

rectified feature map now goes through a pooling layer to generate a pooled feature map.

The pooling layer uses various filters to identify different parts of the image like edges, corners,

body, feathers, eyes, and beak.

Here’s how the structure of the convolution neural network looks so far:

The next step in the process is called flattening. Flattening is used to convert all the resultant 2-

Dimensional arrays from pooled feature maps into a single long continuous linear vector.

The flattened matrix is fed as input to the fully connected layer to classify the image.

Here’s how exactly CNN recognizes a bird:

 The pixels from the image are fed to the convolutional layer that performs the convolution
operation

 It results in a convolved map
 The convolved map is applied to a ReLU function to generate a rectified feature map
 The image is processed with multiple convolutions and ReLU layers for locating the features
 Different pooling layers with various filters are used to identify specific parts of the image
 The pooled feature map is flattened and fed to a fully connected layer to get the final output

Use case implementation using CNN

What a convolutional neural network (CNN) does differently

A convolutional neural network is a specific kind of neural network with multiple layers. It

processes data that has a grid-like arrangement then extracts important features. One huge

advantage of using CNNs is that you don't need to do a lot of pre-processing on images.

A big difference between a CNN and a regular neural network is that CNNs use convolutions to

handle the math behind the scenes. A convolution is used instead of matrix multiplication in at

least one layer of the CNN. Convolutions take to two functions and return a function.

CNNs work by applying filters to your input data. What makes them so special is that CNNs are

able to tune the filters as training happens. That way the results are fine-tuned in real time, even

when you have huge data sets, like with images.

Since the filters can be updated to train the CNN better, this removes the need for hand-created

filters. That gives us more flexibility in the number of filters we can apply to a data set and the

relevance of those filters. Using this algorithm, we can work on more sophisticated problems like

face recognition.

How Convolutional Neural Networks Work

Convolutional neural networks are based on neuroscience findings. They are made of layers of

artificial neurons called nodes. These nodes are functions that calculate the weighted sum of the

inputs and return an activation map. This is the convolution part of the neural network.

Each node in a layer is defined by its weight values. When you give a layer some data, like an

image, it takes the pixel values and picks out some of the visual features.

When you're working with data in a CNN, each layer returns activation maps. These maps point

out important features in the data set. If you gave the CNN an image, it'll point out features based

on pixel values, like colors, and give you an activation function.

Usually with images, a CNN will initially find the edges of the picture. Then this slight definition

of the image will get passed to the next layer. Then that layer will start detecting things like

corners and color groups. Then that image definition will get passed to the next layer and the

cycle continues until a prediction is made.

As the layers get more defined, this is called max pooling. It only returns the most relevant

features from the layer in the activation map. This is what gets passed to each successive layer

until you get the final layer.

The last layer of a CNN is the classification layer which determines the predicted value based on

the activation map. If you pass a handwriting sample to a CNN, the classification layer will tell

you what letter is in the image. This is what autonomous vehicles use to determine whether an

object is another car, a person, or some other obstacle.

Training a CNN is similar to training many other machine learning algorithms. You'll start with

some training data that is separate from your test data and you'll tune your weights based on the

accuracy of the predicted values. Just be careful that you don't overfit your model.

Different types of CNNs

There are multiple kinds of CNNs you can use depending on your problem.

1D CNN: With these, the CNN kernel moves in one direction. 1D CNNs are usually used on

time-series data.

2D CNN: These kinds of CNN kernels move in two directions. You'll see these used with image

labelling and processing.

3D CNN: This kind of CNN has a kernel that moves in three directions. With this type of CNN,

researchers use them on 3D images like CT scans and MRIs.

In most cases, you'll see 2D CNNs because those are commonly associated with image data.

Here are some of the applications that you might see CNNs used for.

 Recognize images with little preprocessing
 Recognize different hand-writing
 Computer vision applications
 Used in banking to read digits on checks
 Used in postal services to read zip codes on an envelope

Architecture of CNN

A typical CNN has the following 4 layers (O’Shea and Nash 2015)

1. Input layer
2. Convolution layer
3. Pooling layer
4. Fully connected layer

Please note that we will explain a 2 dimensional (2D) CNN here. But the same concepts apply to

a 1 (or 3) dimensional CNN as well.

Input layer

The input layer represents the input to the CNN. An example input, could be a 28 pixel by 28

pixel grayscale image. Unlike FNN, we do not “flatten” the input to a 1D vector, and the input is

presented to the network in 2D as a 28 x 28 matrix. This makes capturing spatial relationships

easier.

Convolution layer

The convolution layer is composed of multiple filters (also called kernels). Filters for a 2D image

are also 2D. Suppose we have a 28 pixel by 28 pixel grayscale image. Each pixel is represented

by a number between 0 and 255, where 0 represents the color black, 255 represents the color

white, and the values in between represent different shades of gray. Suppose we have a 3 by 3

filter (9 values in total), and the values are randomly set to 0 or 1. Convolution is the process of

placing the 3 by 3 filter on the top left corner of the image, multiplying filter values by the pixel

values and adding the results, moving the filter to the right one pixel at a time and repeating this

process. When we get to the top right corner of the image, we simply move the filter down one

pixel and restart from the left. This process ends when we get to the bottom right corner of the

image.

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#OSheaEtAl

Figure 2: A 3 by 3 filter applied to a 4 by 4 image, resulting in a

2 by 2 image (Dumoulin and Visin 2016)

Covolution operator has the following parameters:

1. Filter size
2. Padding
3. Stride
4. Dilation
5. Activation function

Filter size can be 5 by 5, 3 by 3, and so on. Larger filter sizes should be avoided as the learning

algorithm needs to learn filter values (weights), and larger filters increase the number of weights

to be learned (more compute capacity, more training time, more chance of overfitting). Also, odd

sized filters are preferred to even sized filters, due to the nice geometric property of all the input

pixels being around the output pixel.

If you look at Figure 2 you see that after applying a 3 by 3 filter to a 4 by 4 image, we end up

with a 2 by 2 image – the size of the image has gone down. If we want to keep the resultant

image size the same, we can use padding. We pad the input in every direction with 0’s before

applying the filter. If the padding is 1 by 1, then we add 1 zero in evey direction. If its 2 by 2,

then we add 2 zeros in every direction, and so on.

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin

Figure 3: A 3 by 3 filter applied to a 5

by 5 image, with padding of 1, resulting in a 5 by 5 image (Dumoulin and Visin 2016)

As mentioned before, we start the convolution by placing the filter on the top left corner of the

image, and after multiplying filter and image values (and adding them), we move the filter to the

right and repeat the process. How many pixels we move to the right (or down) is the stride. In

figure 2 and 3, the stride of the filter is 1. We move the filter one pixel to the right (or down). But

we could use a different stride. Figure 4 shows an example of using stride of 2.

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin

Figure 4: A 3 by 3 filter applied to a 5 by 5 image, with

stride of 2, resulting in a 2 by 2 image (Dumoulin and Visin 2016)

When we apply a, say 3 by 3, filter to an image, our filter’s output is affected by pixels in a 3 by

3 subset of the image. If we like to have a larger receptive field (portion of the image that affect

our filter’s output), we could use dilation. If we set the dilation to 2 (Figure 5), instead of a

contiguous 3 by 3 subset of the image, every other pixel of a 5 by 5 subset of the image affects

the filter’s output.

Figure 5: A 3 by 3 filter applied to a 7

by 7 image, with dilation of 2, resulting in a 3 by 3 image (Dumoulin and Visin 2016)

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin
https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#DumoulinVisin

After the filter scans the whole image, we apply an activation function to filter output to

introduce non-linearlity. The preferred activation function used in CNN is ReLU or one its

variants like Leaky ReLU (Nwankpa et al. 2018). ReLU leaves pixels with positive values in

filter output as is, and replacing negative values with 0 (or a small number in case of Leaky

ReLU). Figure 6 shows the results of applying ReLU activation function to a filter output.

Figure 6: Applying ReLU activation

function to filter output

Given the input size, filter size, padding, stride and dilation you can calculate the output size of

the convolution operation as below.

(input size−(filter size + (filter size -1)*(dilation - 1)))+(2∗padding)stride+1

Figure 7:

Illustration of single input channel two dimensional convolution

Figure 7 illustrates the calculations for a convolution operation, via a 3 by 3 filter on a single

channel 5 by 5 input vector (5 x 5 x 1). Figure 8 illustrates the calculations when the input vector

has 3 channels (5 x 5 x 3). To show this in 2 dimensions, we are displaying each channel in input

vector and filter separately. Figure 9 shows a sample multi-channel 2D convolution in 3

dimensions.

https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html#NwankpaEtAl

Figure 8: Illustration of multiple input channel two dimensional convolution

As Figures 8 and 9 show the output of a multi-channel 2 dimensional filter is a single channel 2

dimensional image. Applying multiple filters to the input image results in a multi-channel 2

dimensional image for the output. For example, if the input image is 28 by 28 by 3 (rows x

columns x channels), and we apply a 3 by 3 filter with 1 by 1 padding, we would get a 28 by 28

by 1 image. If we apply 15 filters to the input image, our output would be 28 by 28 by 15. Hence,

the number of filters in a convolution layer allows us to increase or decrease the channel size.

Pooling layer

The pooling layer performs down sampling to reduce the spatial dimensionality of the input. This

decreases the number of parameters, which in turn reduces the learning time and computation,

and the likelihood of overfitting. The most popular type of pooling is max pooling. Its usually a 2

by 2 filter with a stride of 2 that returns the maximum value as it slides over the input data

(similar to convolution filters).

Fully connected layer

The last layer in a CNN is a fully connected layer. We connect all the nodes from the previous

layer to this fully connected layer, which is responsible for classification of the image.

Deep Learning

Deep learning is based on the branch of machine learning, which is a subset of artificial

intelligence. Since neural networks imitate the human brain and so deep learning will do. In deep

learning, nothing is programmed explicitly. Basically, it is a machine learning class that makes

use of numerous nonlinear processing units so as to perform feature extraction as well as

transformation. The output from each preceding layer is taken as input by each one of the

successive layers.

Deep learning models are capable enough to focus on the accurate features themselves by

requiring a little guidance from the programmer and are very helpful in solving out the problem

of dimensionality. Deep learning algorithms are used, especially when we have a huge no of

inputs and outputs.

Since deep learning has been evolved by the machine learning, which itself is a subset of

artificial intelligence and as the idea behind the artificial intelligence is to mimic the human

behavior, so same is "the idea of deep learning to build such algorithm that can mimic the brain".

Deep learning is implemented with the help of Neural Networks, and the idea behind the

motivation of Neural Network is the biological neurons, which is nothing but a brain cell.

“Deep learning is a collection of statistical techniques of machine learning for learning feature

hierarchies that are actually based on artificial neural networks.”

https://www.javatpoint.com/deep-learning-algorithms
https://www.javatpoint.com/machine-learning
https://www.javatpoint.com/artificial-intelligence-tutorial
https://www.javatpoint.com/artificial-neural-network

Example of Deep Learning

In the example given above, we provide the raw data of images to the first layer of the input layer. After

then, these input layer will determine the patterns of local contrast that means it will differentiate on

the basis of colors, luminosity, etc. Then the 1st hidden layer will determine the face feature, i.e., it will

fixate on eyes, nose, and lips, etc. And then, it will fixate those face features on the correct face

template. So, in the 2nd hidden layer, it will actually determine the correct face here as it can be seen in

the above image, after which it will be sent to the output layer. Likewise, more hidden layers can be

added to solve more complex problems, for example, if you want to find out a particular kind of face

having large or light complexions. So, as and when the hidden layers increase, we are able to solve

complex problems.

Architectures

 Deep Neural Networks
It is a neural network that incorporates the complexity of a certain level, which means several
numbers of hidden layers are encompassed in between the input and output layers. They are
highly proficient on model and process non-linear associations.

 Deep Belief Networks
A deep belief network is a class of Deep Neural Network that comprises of multi-layer belief
networks.
Steps to perform DBN:

1. With the help of the Contrastive Divergence algorithm, a layer of features is learned
from perceptible units.

2. Next, the formerly trained features are treated as visible units, which perform learning
of features.

3. Lastly, when the learning of the final hidden layer is accomplished, then the whole DBN
is trained.

 Recurrent Neural Networks
It permits parallel as well as sequential computation, and it is exactly similar to that of the
human brain (large feedback network of connected neurons). Since they are capable enough to
reminisce all of the imperative things related to the input they have received, so they are more
precise.

Types of Deep Learning Networks

1. Feed Forward Neural Network

A feed-forward neural network is none other than an Artificial Neural Network, which ensures

that the nodes do not form a cycle. In this kind of neural network, all the perceptrons are

organized within layers, such that the input layer takes the input, and the output layer generates

the output. Since the hidden layers do not link with the outside world, it is named as hidden

layers. Each of the perceptrons contained in one single layer is associated with each node in the

subsequent layer. It can be concluded that all of the nodes are fully connected. It does not contain

any visible or invisible connection between the nodes in the same layer. There are no back-loops

in the feed-forward network. To minimize the prediction error, the backpropagation algorithm

can be used to update the weight values.

Applications:

 Data Compression

 Pattern Recognition

 Computer Vision

 Sonar Target Recognition

 Speech Recognition

 Handwritten Characters Recognition

2. Recurrent Neural Network

Recurrent neural networks are yet another variation of feed-forward networks. Here each of the

neurons present in the hidden layers receives an input with a specific delay in time. The

Recurrent neural network mainly accesses the preceding info of existing iterations. For example,

to guess the succeeding word in any sentence, one must have knowledge about the words that

were previously used. It not only processes the inputs but also shares the length as well as

weights crossways time. It does not let the size of the model to increase with the increase in the

input size. However, the only problem with this recurrent neural network is that it has slow

computational speed as well as it does not contemplate any future input for the current state. It

has a problem with reminiscing prior information.

Applications:

 Machine Translation
 Robot Control
 Time Series Prediction

https://www.javatpoint.com/keras-artificial-neural-networks
https://www.javatpoint.com/keras-recurrent-neural-networks

 Speech Recognition
 Speech Synthesis
 Time Series Anomaly Detection
 Rhythm Learning
 Music Composition

3. Convolutional Neural Network

Convolutional Neural Networks are a special kind of neural network mainly used for image

classification, clustering of images and object recognition. DNNs enable unsupervised

construction of hierarchical image representations. To achieve the best accuracy, deep

convolutional neural networks are preferred more than any other neural network.

Applications:

 Identify Faces, Street Signs, Tumors.
 Image Recognition.
 Video Analysis.
 NLP.
 Anomaly Detection.
 Drug Discovery.
 Checkers Game.
 Time Series Forecasting.

4. Restricted Boltzmann Machine

RBMs are yet another variant of Boltzmann Machines. Here the neurons present in the input

layer and the hidden layer encompasses symmetric connections amid them. However, there is no

internal association within the respective layer. But in contrast to RBM, Boltzmann machines do

encompass internal connections inside the hidden layer. These restrictions in BMs helps the

model to train efficiently.

Applications:

 Filtering.
 Feature Learning.
 Classification.
 Risk Detection.
 Business and Economic analysis.

5. Autoencoders

An autoencoder neural network is another kind of unsupervised machine learning algorithm.

Here the number of hidden cells is merely small than that of the input cells. But the number of

input cells is equivalent to the number of output cells. An autoencoder network is trained to

display the output similar to the fed input to force AEs to find common patterns and generalize

the data. The autoencoders are mainly used for the smaller representation of the input. It helps in

https://www.javatpoint.com/keras-convolutional-neural-network
https://www.javatpoint.com/keras-restricted-boltzmann-machine

the reconstruction of the original data from compressed data. This algorithm is comparatively

simple as it only necessitates the output identical to the input.

 Encoder: Convert input data in lower dimensions.
 Decoder: Reconstruct the compressed data.

Applications:

 Classification.
 Clustering.
 Feature Compression.

Deep learning applications

 Self-Driving Cars
In self-driven cars, it is able to capture the images around it by processing a huge amount of
data, and then it will decide which actions should be incorporated to take a left or right or
should it stop. So, accordingly, it will decide what actions it should take, which will further
reduce the accidents that happen every year.

 Voice Controlled Assistance
When we talk about voice control assistance, then Siri is the one thing that comes into our
mind. So, you can tell Siri whatever you want it to do it for you, and it will search it for you and
display it for you.

 Automatic Image Caption Generation
Whatever image that you upload, the algorithm will work in such a way that it will generate
caption accordingly. If you say blue colored eye, it will display a blue-colored eye with a caption
at the bottom of the image.

 Automatic Machine Translation
With the help of automatic machine translation, we are able to convert one language into
another with the help of deep learning.

Limitations

 It only learns through the observations.
 It comprises of biases issues.

Advantages

 It lessens the need for feature engineering.
 It eradicates all those costs that are needless.
 It easily identifies difficult defects.
 It results in the best-in-class performance on problems.

Disadvantages

 It requires an ample amount of data.

 It is quite expensive to train.
 It does not have strong theoretical groundwork.

Extreme Learning Machine

The learning pace of the feed-forward neural networks is considered as much slower than required. Due

to this limitation, it has been a major barrier in many applications for decades. One of the major reasons

is that sluggish gradient-based learning algorithms are widely employed to train neural networks which

iteratively tune all of the network’s parameters and makes the learning process slower. Unlike standard

learning approaches, there is a learning technique for Single-Hidden Layer Feed-Forward Neural

Networks (SLFNs) that is called Extreme Learning Machine (ELM). The ELMs are believed to have the

ability to learn thousands of times faster than networks trained using the backpropagation technique. In

this article, we will discuss ELM in detail. The major points that we will cover in this article are listed

below.

Table of Contents

1. The Feed-Forward Neural Network
2. Extreme Learning Machine (ELM)
3. Fundamentals of ELM
4. Variants of ELM
5. Application of ELM

Let’s proceed with understanding Feed-Forward NN.

The Feed-Forward Neural Network

The feedforward neural network was the earliest and most basic type of artificial neural network

to be developed. In this network, information flows only in one direction forward from the input

nodes to the output nodes, passing via any hidden nodes. The network is devoid of cycles or

loops.

A single-layer perceptron network is the simplest type of FeedForward neural network,

consisting of a single layer of output nodes with the inputs fed straight to the outputs via a

sequence of weights. Each node calculates the total of the weights and inputs, and if the value is

greater than a threshold (usually 0), the neuron fires and takes the active value (commonly 1);

otherwise, it takes the deactivated value (typically 0 or -1). Artificial neurons or linear threshold

units are neurons with this type of activation function. The term perceptron is frequently used in

the literature to refer to networks that contain only one of these components.

https://analyticsindiamag.com/guide-to-feed-forward-network-using-pytorch-with-mnist-dataset/
https://analyticsindiamag.com/ann-with-linear-regression/

Extreme Learning Machine (ELM)

Extreme learning machines are feed-forward neural networks having a single layer or multiple

layers of hidden nodes for classification, regression, clustering, sparse approximation,

compression, and feature learning, where the hidden node parameters do not need to be

modified. These hidden nodes might be assigned at random and never updated, or they can be

inherited from their predecessors and never modified. In most cases, the weights of hidden nodes

are usually learned in a single step which essentially results in a fast learning scheme.

These models, according to their inventors, are capable of producing good generalization

performance and learning thousands of times quicker than backpropagation networks. These

models can also outperform support vector machines in classification and regression

applications, according to the research.

Fundamentals of ELM

An ELM is a quick way to train SLFN networks (shown in the below figure). An SLFN

comprises three layers of neurons, however, the name Single refers to the model’s one layer of

non-linear neurons which is the hidden layer. The input layer offers data features but does not do

any computations, whereas the output layer is linear with no transformation function and no bias.

Source

https://ieeexplore.ieee.org/document/7140733

The ELM technique sets input layer weights W and biases b at random and never adjusts them.

Because the input weights are fixed, the output weights ???? are independent of them (unlike in

the Backpropagation training method) and have a straightforward solution that does not require

iteration. Such a solution is also linear and very fast to compute for a linear output layer.

Random input layer weights improve the generalization qualities of a linear output layer solution

because they provide virtually orthogonal (weakly correlated) hidden layer features. A linear

system’s solution is always in a range of inputs. If the solution weight range is constrained,

orthogonal inputs provide a bigger solution space volume with these constrained weights.

Smaller weight norms tend to make the system more stable and noise resistant since input errors

are not aggravating in the output of the linear system with smaller coefficients. As a result, the

random hidden layer creates weakly correlated hidden layer features, allowing for a solution with

a low norm and strong generalization performance.

Variants of ELM

In this section, we will summarize several variants of ELM and will introduce them briefly.

ELM for Online Learning

There are numerous types of data in real-world applications, thus ELM must be changed to

effectively learn from these data. For example, because the dataset is increasing, we may not

always be able to access the entire dataset. From time to time, new samples are added to the

dataset. Every time the set grows, we must retrain the ELM.

However, because the new samples frequently account for only a small portion of the total, re-

training the network using the entire dataset again is inefficient. Huang and Liang proposed an

online sequential ELM to address this issue (OS-ELM). The fundamental idea behind OS-ELM

is to avoid re-training over old samples by employing a sequential approach. OS-ELM can

update settings over new samples consecutively after startup. As a result, OS-ELM can be

trained one at a time or block by block.

Incremental ELM

To build an incremental feedforward network, Huang et al. developed an incremental extreme

learning machine (I-ELM). When a new hidden node was introduced, I-ELM randomly added

nodes to the hidden layer one by one, freezing the output weights of the existing hidden nodes. I-

ELM is effective for SLFNs with piecewise continuous activation functions (including

differentiable) as well as SLFNs with continuous activation functions (such as threshold).

Pruning ELM

Rong et al. proposed a pruned-ELM (P-ELM) algorithm as a systematic and automated strategy

for building ELM networks in light of the fact that using too few/many hidden nodes could lead

to underfitting/overfitting concerns in pattern categorization. P-ELM started with a large number

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.5176&rep=rep1&type=pdf
https://pubmed.ncbi.nlm.nih.gov/16856652/
https://www.semanticscholar.org/paper/A-fast-pruned-extreme-learning-machine-for-problem-Rong-Ong/1a7423f3c3386ec9e73a2e51a11f2afc61753cb7

of hidden nodes and subsequently deleted the ones that were irrelevant or lowly relevant during

learning by considering their relevance to the class labels.

ELM’s architectural design can thus be automated as a result. When compared to the traditional

ELM, simulation results indicated that the P-ELM resulted in compact network classifiers that

generate fast response and robust prediction accuracy on unseen data.

Error-Minimized ELM

Feng et al. suggested an error-minimization-based method for ELM (EM-ELM) that can

automatically identify the number of hidden nodes in generalized SLFNs by growing hidden

nodes one by one or group by group. The output weights were changed incrementally as the

networks grew, reducing the computational complexity dramatically. The simulation results on

sigmoid type hidden nodes demonstrated that this strategy may greatly reduce the computational

cost of ELM and offer an ELM implementation that is both efficient and effective.

Evolutionary ELM

When ELM is used, the number of hidden neurons is usually selected at random. Due to the

random determination of input weights and hidden biases, ELM may require a greater number of

hidden neurons. Zhu et al. introduced a novel learning algorithm called evolutionary extreme

learning machine (E-ELM) for optimizing input weights and hidden biases and determining

output weights.

To improve the input weights and hidden biases in E-ELM, the modified differential

evolutionary algorithm was utilized. The output weights were determined analytically using

Moore– Penrose (MP) generalized inverse.

Applications of ELM

Extreme learning machine has been used in many application domains such as medicine,

chemistry, transportation, economy, robotics, and so on due to its superiority in training speed,

accuracy, and generalization. This section highlights some of the most common ELM

applications.

IoT Application

As the Internet of Things (IoT) has gained more attention from academic and industry circles in

recent years, a growing number of scientists have developed a variety of IoT approaches or

applications based on modern information technologies.

Using ELM in IoT applications can be done in a variety of ways. Rathore and Park developed an

ELM-based strategy for detecting cyber-attacks. To identify assaults from ordinary visits, they

devised a fog computing-based attack detection system and used an updated ELM as a classifier.

https://pubmed.ncbi.nlm.nih.gov/19596632/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.3643&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S1568494618303508?via%3Dihub

Transportation Application

The application of machine learning in transportation is a popular issue. Scientists, for example,

used machine learning techniques to create a driver sleepiness monitoring system to prevent

unsafe driving and save lives. It’s been a long time since an extreme learning machine was used

to solve transportation-related challenges. Sun and Ng suggested a two-stage approach to

transportation system optimization that integrated linear programming and extreme learning

machines. Two trials showed that combining their approaches might extend the life of a

transportation system while also increasing its reliability.

Convolutional Networks
Convolutional networks convolutional (LeCun, 1989), also known as neural networks or
CNNs, are a specialized kind of neural network for processing data that has a known, grid-
like topology. Examples include time-series data, which can be thought of as a 1D grid
taking samples at regular time intervals, and image data,which can be thought of as a 2D
grid of pixels. Convolutional

Convolution is a specialized kind of linear operation. Convolutional networks are simply
neural networks that use convolution in place of general matrix multiplication in at
least one of their layers.

The Convolution Operation
convolution is an operation on two functions of a realvalued argument. To motivate the
definition of convolution, we start with examples of two functions we might use.

Suppose we are tracking the location of a spaceship with a laser sensor. Our
laser sensor provides a single output x(t), the position of the spaceship at time
t. Both x and t are real-valued, i.e., we can get a different reading from the laser sensor at
any instant in time.
Now suppose that our laser sensor is somewhat noisy. To obtain a less noisy estimate of
the spaceship’s position, we would like to average together several measurements. Of
course, more recent measurements are more relevant, so we will want this to be a
weighted average that gives more weight to recent measurements. We can do this with a
weighting function w(a), where a is the age of a measurement.If we apply such a weighted
average operation at every moment, we obtain a new function providing a smoothed
estimate of the position s of the spaceship:

This operation is called convolution. The convolution operation is typically
denoted with an asterisk:

https://ieeexplore.ieee.org/document/5954183

In our example, w needs to be a valid probability density function, or the output is not a
weighted average. Also, w needs to be 0 for all negative arguments, or it will look into the
future, which is presumably beyond our capabilities.

In convolutional network terminology, the first argument (in this example, the function x)
to the convolution is often referred to as the input and the second argument (in this
example, the function w) as the kernel. The output is sometimes referred to as the feature
map.

In our example, it might be more realistic to assume that our laser provides a measurement
once per second. The time index t can then take on only integer values. If we now assume
that x and w are defined only on integer t, we can define the discrete convolution:

In machine learning applications, the input is usually a multidimensional array
of data and the kernel is usually a multidimensional array of parameters that are
adapted by the learning algorithm. We will refer to these multidimensional arrays
as tensors.
Finally, we often use convolutions over more than one axis at a time. For
example, if we use a two-dimensional image I as our input, we probably also want to use a
two-dimensional kernel K:

Convolution is commutative, meaning we can equivalently write:

Usually the latter formula is more straightforward to implement in a machine learning
library, because there is less variation in the range of valid values of m and n.The
commutative property of convolution arises because we have flipped the kernel relative to
the input, in the sense that as m increases, the index into the input increases, but the index
into the kernel decreases. The only reason to flip the kernel is to obtain the commutative
property.

While the commutative property is useful for writing proofs, it is not usually an important
property of a neural network implementation. Instead, many neural network libraries

implement a related function called the cross-correlation, which is the same as convolution
but without flipping the kernel:

Fig. 9.1 for an example of convolution (without kernel flipping) applied to a 2-D
tensor.Discrete convolution can be viewed as multiplication by a matrix. However, the
matrix has several entries constrained to be equal to other entries. For example, for
univariate discrete convolution, each row of the matrix is constrained to be equal to the
row above shifted by one element. This is known as a Toeplitz matrix.
In two dimensions, a doubly block circulant matrix corresponds to convolution. In addition
to these constraints that several elements be equal to each other, convolution usually
corresponds to a very sparse matrix (a matrix whose entries are mostly equal to zero). This
is because the kernel is usually much smaller than the input image. Any neural network
algorithm that works with matrix multiplication and does not depend on specific
properties of the matrix structure should work with convolution, without requiring any
further changes to the neural network.Typical convolutional neural networks do make use
of further specializations in order to deal with large inputs efficiently, but these are not
strictly necessary from a theoretical perspective.

Motivation
Convolution leverages three important ideas that can help improve a machine learning
system: sparse interactions parameter sharing equivariant , and representations. Moreover,
convolution provides a means for working with inputs of variable
size. We now describe each of these ideas in turn.
Traditional neural network layers use matrix multiplication by a matrix of
parameters with a separate parameter describing the interaction between each
input unit and each output unit. This means every output unit interacts with every input
unit. Convolutional networks, however, typically have sparse interactions (also referred to
as sparse connectivity or sparse weights). This is accomplished by making the kernel smaller
than the input. For example, when processing an image, the input image might have
thousands or millions of pixels, but we can detect small, meaningful features such as edges
with kernels that occupy only tens or hundreds of pixels. This means that we need to store
fewer parameters, which both reduces the memory requirements of the model and
improves its statistical efficiency. It also means that computing the output requires fewer
operations. These improvements in efficiency are usually quite large. If there are m inputs
and n outputs, then matrix multiplication requiresm×n parameters and the algorithms used
in practice have O(m × n) runtime (per example). If we limit the number of connections

each output may have to k, then the sparsely connected approach requires only k × n
parameters and O(k × n) runtime.

Parameter sharing refers to using the same parameter for more than one function in a
model. In a traditional neural net, each element of the weight matrix is used exactly once
when computing the output of a layer. It is multiplied by one element of the input and then
never revisited. As a synonym for parameter sharing, one can say that a network has tied
weights, because the value of the weight applied to one input is tied to the value of a weight
applied elsewhere. In a convolutional neural net, each member of the kernel is used at
every position of the input (except perhaps some of the boundary pixels, depending on the
design decisions regarding the boundary). The parameter sharing used by the convolution
operation means that rather than learning a separate set of parameters for every location,
we learn

only one set. This does not affect the runtime of forward propagation—it is still O(k × n)—
but it does further reduce the storage requirements of the model to k parameters. Recall
that k is usually several orders of magnitude less than m. Since m and n are usually roughly
the same size, k is practically insignificant compared to m× n.

In the case of convolution, the particular form of parameter sharing causes the layer to
have a property called equivariance to translation. To say a function is equivariant means
that if the input changes, the output changes in the same way. Specifically, a function f(x) is
equivariant to a function g if f (g(x)) = g(f(x)). In the case of convolution, if we let g be any
function that translates the input, i.e., shifts it, then the convolution function is equivariant
to g. For example, let I be a function giving image brightness at integer coordinates. Let g be
a function mapping one image function to another image function, such that I = g(I) is
the image function with I (x, y) = I(x − 1, y). This shifts every pixel of I one unit to the right.
If we apply this transformation to I , then apply convolution, the result will be the same as if
we applied convolution to I , then applied the transformation g to the output.

Pooling
A typical layer of a convolutional network consists of three stages (see Fig. 9.7). In the first
stage, the layer performs several convolutions in parallel to produce a set of linear
activations. In the second stage, each linear activation is run through a nonlinear activation
function, such as the rectified linear activation function. This stage is sometimes called the
detector stage. In the third stage, we use a pooling function to modify the output of the layer
further.

A pooling function replaces the output of the net at a certain location with a summary
statistic of the nearby outputs. For example, the max pooling (Zhou and Chellappa, 1988)
operation reports the maximum output within a rectangular

based on the distance from the central pixel. In all cases, pooling helps to make the
representation become approximately invariant to small translations of the input.
Invariance to translation means that if we translate the input by a small amount, the values
of most of the pooled outputs do not change. See Fig. for an example 9.8 of how this works.
Invariance to local translation can be a very useful property if we care more about
whether some feature is present than exactly where it is.
For example, when determining whether an image contains a face, we need not know the
location of the eyes with pixel-perfect accuracy, we just need to know that there is an eye
on the left side of the face and an eye on the right side of the face. In other contexts, it is
more important to preserve the location of a feature. For example, if we want to find a
corner defined by two edges meeting at a specific orientation, we need to preserve the
location of the edges well enough to test whether they meet.

Pooling over spatial regions produces invariance to translation, but if we pool over the
outputs of separately parametrized convolutions, the features can learn which
transformations to become invariant to (see Fig. 9.9). Because pooling summarizes the
responses over a whole neighborhood, it is possible to use fewer pooling units than
detector units, by reporting summary statistics for pooling regions spaced k pixels apart
rather than 1 pixel apart. See Fig. 9.10 for an example. This improves the computational
efficiency of the network because the next layer has roughly k times fewer inputs to
process. When the number of parameters in the next layer is a function of its input size
(such as when the next layer is fully connected and based on matrix multiplication) this
reduction in the input size can also result in improved statistical efficiency and reduced
memory requirements for storing the parameters.
For many tasks, pooling is essential for handling inputs of varying size. For example, if we
want to classify images of variable size, the input to the classification layer must have a
fixed size. This is usually accomplished by varying the size of an offset between pooling
regions so that the classification layer always receives the same number of summary
statistics regardless of the input size. For example, the final pooling layer of the network

may be defined to output four sets of summary statistics, one for each quadrant of an
image, regardless of the image size.

Pooling can complicate some kinds of neural network architectures that use
top-down information, such as Boltzmann machines and autoencoders.

 Some examples of complete convolutional network architectures for classification
using convolution and pooling are shown in Fig. 9.11.

Variants of the Basic Convolution Function
When discussing convolution in the context of neural networks, we usually do not refer
exactly to the standard discrete convolution operation as it is usually understood in the
mathematical literature. The functions used in practice differ slightly. Here we describe
these differences in detail, and highlight some useful properties of the functions used in
neural networks. First, when we refer to convolution in the context of neural networks, we
usually actually mean an operation that consists of many applications of convolution in
parallel. This is because convolution with a single kernel can only extract one kind of
feature, albeit at many spatial locations. Usually we want each layer of our network to
extract many kinds of features, at many locations.

Additionally, the input is usually not just a grid of real values. Rather, it is a grid of vector-
valued observations. For example, a color image has a red, green and blue intensity at each
pixel. In a multilayer convolutional network, the input to the second layer is the output of
the first layer, which usually has the output of many different convolutions at each position.
When working with images, we usually think of the input and output of the convolution as
being 3-D tensors, with one index into the different channels and two indices into the
spatial coordinates of each channel. Software implementations usually work in batch mode,
so they will actually use 4-D tensors, with the fourth axis indexing different examples in
the batch, but we will omit the batch axis in our description here for simplicity. Because
convolutional networks usually use multi-channel convolution, the linear operations they
are based on are not guaranteed to be commutative, even if kernel-flipping is used. These
multi-channel operations are only commutative if each operation has the same number of
output channels as input channels.
Assume we have a 4-D kernel tensor K with element Ki,j,k,l giving the connection strength
between a unit in channel i of the output and a unit in channel j of the input, with an offset
of k rows and l columns between the output unit and the
input unit. Assume our input consists of observed data V with element Vi,j,k giving the
value of the input unit within channel i at row j and column k. Assume our output consists
of Z with the same format as V. If Z is produced by convolving K across V without flipping
K, then

where the summation over l , m and n is over all values for which the tensor indexing
operations inside the summation is valid. In linear algebra notation, we index into arrays
using a 1 for the first entry. This necessitates the −1 in the above formula. Programming
languages such as C and Python index starting from 0, rendering the above expression even
simpler.
We may want to skip over some positions of the kernel in order to reduce the
computational cost (at the expense of not extracting our features as finely). We

can think of this as downsampling the output of the full convolution function. If we want to
sample only every s pixels in each direction in the output, then we can define a
downsampled convolution function c such that

We refer to s as the stride of this downsampled convolution. It is also possible to define a
separate stride for each direction of motion. See Fig. 9.12 for an illustration.

One essential feature of any convolutional network implementation is the ability to
implicitly zero-pad the input V in order to make it wider. Without this feature, the width of
the representation shrinks by one pixel less than the kernel width at each layer. Zero
padding the input allows us to control the kernel width and the size of the output
independently. Without zero padding, we are forced to

choose between shrinking the spatial extent of the network rapidly and using small
kernels—both scenarios that significantly limit the expressive power of the network.

Three special cases of the zero-padding setting are worth mentioning. One is the

extreme case in which no zero-padding is used whatsoever, and the convolution kernel is
only allowed to visit positions where the entire kernel is contained entirely within the
image. In MATLAB terminology, this is called valid convolution. In this case, all pixels in the
output are a function of the same number of pixels in the input, so the behavior of an
output pixel is somewhat more regular. However, the size of the output shrinks at each
layer. If the input image has width m and the kernel has width k, the output will be of width
m− k+ 1. The rate of this shrinkage can be dramatic if the kernels used are large. Since the
shrinkage is greater than 0, it limits the number of convolutional layers that can be
included in the network. As layers are added, the spatial dimension of the network will
eventually drop to 1 × 1, at which point additional layers cannot meaningfully be
considered convolutional. Another special case of the zero-padding setting is when just
enough zero-padding is added to keep the size of the output equal to the size of the input.
MATLAB calls this same convolution. In this case, the network can contain as many
convolutional layers as the available hardware can support, since the operation of
convolution does not modify the architectural possibilities available to the next layer.
However, the input pixels near the border influence fewer output pixels than the input
pixels near the center. This can make the border pixels somewhat underrepresented in the
model. This motivates the other extreme case, which MATLAB refers to as full convolution,
in which enough zeroes are added for every pixel to be visited k times in each direction,
resulting in an output image of width m+ k − 1. In this case, the output pixels near the
border are a function of fewer pixels than the output pixels near the center. This can make
it difficult to learn a single kernel that performs well at all positions in the convolutional
feature map. Usually the optimal amount of zero padding (in terms of test set classification
accuracy) lies somewhere between “valid” and “same”convolution.

In some cases, we do not actually want to use convolution, but rather locally connected
layers (LeCun, 1986, 1989). In this case, the adjacency matrix in the graph of our MLP is the
same, but every connection has its own weight, specified

by a 6-D tensor W. The indices into W are respectively: i, the output channel, j, the output
row, k, the output column, l, the input channel, m, the row offset within the input, and n, the
column offset within the input. The linear part of a locally connected layer is then given by

This is sometimes also called unshared convolution, because it is a similar operation to
discrete convolution with a small kernel, but without sharing parameters across locations.
Fig. 9.14 compares local connections, convolution, and full connections.

the output width, this is the same as a locally connected layer.

where % is the modulo operation, with t%t = 0, (t + 1)%t = 1, etc. It is straightforward to
generalize this equation to use a different tiling range for each dimension. Both locally
connected layers and tiled convolutional layers have an interesting interaction with max-
pooling: the detector units of these layers are driven by different filters. If these filters learn

to detect different transformed versions of the same underlying features, then the max-
pooled units become invariant to the learned transformation (see Fig. 9.9). Convolutional
layers are hard-coded to be invariant specifically to translation.

The matrix involved is a function of the convolution kernel. The matrix is sparse and each
element of the kernel is copied to several elements of the matrix. This view helps us to
derive some of the other operations needed to implement a convolutional network.
Multiplication by the transpose of the matrix defined by convolution is one such operation.
This is the operation needed to back-propagate error derivatives through a convolutional
layer, so it is needed to train convolutional networks that have more than one hidden layer.
This same operation is also needed if we wish to reconstruct the visible units from the
hidden units (Simard et al., 1992).

Reconstructing the visible units is an operation commonly used in the models described in
Part III of this book, such as autoencoders, RBMs, and sparse coding. Transpose
convolution is necessary to construct convolutional versions of those models. Like the
kernel gradient operation, this input gradient operation can be implemented using a
convolution in some cases, but in the general case requires a third operation to be
implemented. Care must be taken to coordinate this transpose operation with the forward
propagation. The size of the output that the transpose operation should return depends on
the zero padding policy and stride of the forward propagation operation, as well as the size
of the forward propagation’s output map. In some cases, multiple sizes of input to forward
propagation can result in the same size of output map, so the transpose operation must be
explicitly told what the size of the original input was.

These three operations—convolution, backprop from output to weights, and
backprop from output to inputs—are sufficient to compute all of the gradients needed to
train any depth of feedforward convolutional network, as well as to train convolutional
networks with reconstruction functions based on the transpose of convolution. See () for a
full derivation Goodfellow 2010 of the equations in the fully general multi-dimensional,
multi-example case. To give a sense of how these equations work, we present the two
dimensional, single example version here.

Suppose we want to train a convolutional network that incorporates strided
convolution of kernel stack K applied to multi-channel image V with stride s as defined by
c(K,V, s) as in Eq. 9.8. Suppose we want to minimize some loss function J(V,K). During
forward propagation, we will need to use c itself to output Z, which is then propagated
through the rest of the network and used to compute the cost function J. During back-
propagation, we will receive a tensor G such that

Unit 4 DEEP FEEDFORWARD NETWORKS
Syllabus
History of Deep Learning- A Probabilistic Theory of Deep Learning-
Gradient Learning – Chain Rule and Backpropagation - Regularization:
Dataset Augmentation – Noise Robustness -Early Stopping, Bagging and
Dropout - batch normalization- VC Dimension and Neural Nets.

Deep Learning – An Introduction

• Deep learning is a method in artificial intelligence (AI) that teaches
computers to process data in a way that is inspired by the human brain.
Deep learning models can recognize complex patterns in pictures, text,
sounds, and other data to produce accurate insights and predictions.

• It has become increasingly popular in recent years due to the advances in
processing power and the availability of large datasets. Because it is
based on artificial neural networks (ANNs) also known as deep neural
networks (DNNs).

• These neural networks are inspired by the structure and function of the
human brain’s biological neurons, and they are designed to learn from
large amounts of data.

• The key characteristic of Deep Learning is the use of deep neural
networks, which have multiple layers of interconnected nodes. These
networks can learn complex representations of data by discovering
hierarchical patterns and features in the data.

• Deep Learning algorithms can automatically learn and improve from data
without the need for manual feature engineering.

Difference between Machine Learning and Deep Learning:

Machine Learning Deep Learning

Apply statistical algorithms to learn
the hidden patterns and
relationships in the dataset.

Uses artificial neural network
architecture to learn the hidden
patterns and relationships in the
dataset.

Can work on the smaller amount of
dataset

Requires the larger volume of
dataset compared to machine
learning

Takes less time to train the model. Takes more time to train the model.
A model is created by relevant
features which are manually
extracted from images to detect an
object in the image.

Relevant features are automatically
extracted from images. It is an end-
to-end learning process.

It can work on the CPU or requires
less computing power as compared
to deep learning.

It requires a high-performance
computer with GPU.

History of Deep Learning
Here is a brief history of some key developments in deep learning:
The history of deep learning can be traced back to 1943, when Walter Pitts and
Warren McCulloch created a computer model based on the neural networks of
the human brain.
They used a combination of algorithms and mathematics they called “threshold
logic” to mimic the thought process. Since that time, Deep Learning has evolved
steadily, with only two significant breaks in its development. Both were tied to
the infamous Artificial Intelligence winters.
The 1960s
Henry J. Kelley is given credit for developing the basics of a continuous Back
Propagation Modelin 1960. In 1962, a simpler version based only on the chain
rule was developed by Stuart Dreyfus. While the concept of back propagation
(the backward propagation of errors for purposes of training) did exist in the
early 1960s, it was clumsy and inefficient, and would not become useful until
1985.
The earliest efforts in developing deep learning algorithms came from Alexey
Grigoryevich Ivakhnenko (developed the Group Method of Data Handling) and
Valentin Grigorʹevich Lapa (author of Cybernetics and Forecasting Techniques)
in 1965. They used models with polynomial (complicated equations) activation
functions, that were then analyzed statistically. From each layer, the best
statistically chosen features were then forwarded on to the next layer (a slow,
manual process).

The 1970s
During the 1970’s the first AI winter kicked in, the result of promises that
couldn’t be kept. The impact of this lack of funding limited both DL and AI
research. Fortunately, there were individuals who carried on the research
without funding.
The first “convolutional neural networks” were used by Kunihiko Fukushima.
Fukushima designed neural networks with multiple pooling and convolutional
layers. In 1979, he developed an artificial neural network, called Neocognitron,
which used a hierarchical, multilayered design. This design allowed the
computer the “learn” to recognize visual patterns. The networks resembled
modern versions but were trained with a reinforcement strategy of recurring
activation in multiple layers, which gained strength over time. Additionally,
Fukushima’s design allowed important features to be adjusted manually by
increasing the “weight” of certain connections. Many of the concepts of
Neocognitron continue to be used.
The use of top-down connections and new learning methods have allowed for a
variety of neural networks to be realized. When more than one pattern is
presented at the same time, the Selective Attention Model can separate and
recognize individual patterns by shifting its attention from one to the other.
(The same process many of us use when multitasking). A modern Neocognitron
can not only identify patterns with missing information (for example, an
incomplete number 5), but can also complete the image by adding the missing
information. This could be described as “inference.”
Back propagation, the use of errors in training deep learning models, evolved
significantly in 1970. This was when Seppo Linnainmaa wrote his master’s
thesis, including a FORTRAN code for back propagation.
Unfortunately, the concept was not applied to neural networks until 1985. This
was when Rumelhart, Williams, and Hinton demonstrated back propagation in
a neural network could provide “interesting” distribution representations.
Philosophically, this discovery brought to light the question within cognitive
psychology of whether human understanding relies on symbolic logic
(computationalism) or distributed representations (connectionism).

The 1980s and 90s
In 1989, Yann LeCun provided the first practical demonstration of
backpropagation at Bell Labs. He combined convolutional neural networks with
back propagation onto read “handwritten” digits. This system was eventually
used to read the numbers of handwritten checks.
This time is also when the second AI winter (1985-90s) kicked in, which also
effected research for neural networks and deep learning. Various overly-
optimistic individuals had exaggerated the “immediate” potential of Artificial
Intelligence, breaking expectations and angering investors. The anger was so
intense, the phrase Artificial Intelligence reached pseudoscience status.
Fortunately, some people continued to work on AI and DL, and some significant
advances were made. In 1995, Dana Cortes and Vladimir Vapnik developed the
support vector machine (a system for mapping and recognizing similar data).

LSTM (long short-term memory) for recurrent neural networks was developed
in 1997, by Sepp Hochreiter and Juergen Schmidhuber.
The next significant evolutionary step for deep learning took place in 1999,
when computers started becoming faster at processing data and GPU (graphics
processing units) were developed. Faster processing, with GPUs processing
pictures, increased computational speeds by 1000 times over a 10 year span.
During this time, neural networks began to compete with support vector
machines. While a neural network could be slow compared to a support vector
machine, neural networks offered better results using the same data. Neural
networks also have the advantage of continuing to improve as more training
data is added.

2000-2010
Around the year 2000, The Vanishing Gradient Problem appeared. It was
discovered “features” (lessons) formed in lower layers were not being learned
by the upper layers, because no learning signal reached these layers. This was
not a fundamental problem for all neural networks, just the ones with gradient-
based learning methods. The source of the problem turned out to be certain
activation functions. A number of activation functions condensed their input, in
turn reducing the output range in a somewhat chaotic fashion. This produced
large areas of input mapped over an extremely small range. In these areas of
input, a large change will be reduced to a small change in the output, resulting
in a vanishing gradient. Two solutions used to solve this problem were layer-
by-layer pre-training and the development of long short-term memory.
In 2001, a research report by META Group (now called Gartner) described he
challenges and opportunities of data growth as three-dimensional. The report
described the increasing volume of data and the increasing speed of data as
increasing the range of data sources and types. This was a call to prepare for the
onslaught of Big Data, which was just starting.
In 2009, Fei-Fei Li, an AI professor at Stanford launched ImageNet, assembled a
free database of more than 14 million labeled images. The Internet is, and was,
full of unlabeled images. Labeled images were needed to “train” neural nets.
Professor Li said, “Our vision was that big data would change the way machine
learning works. Data drives learning.”

2011-2020
By 2011, the speed of GPUs had increased significantly, making it possible to
train convolutional neural networks “without” the layer-by-layer pre-training.
With the increased computing speed, it became obvious deep learning had
significant advantages in terms of efficiency and speed. One example is AlexNet,
a convolutional neural network whose architecture won several international
competitions during 2011 and 2012. Rectified linear units were used to
enhance the speed and dropout.

Also in 2012, Google Brain released the results of an unusual project known as
The Cat Experiment. The free-spirited project explored the difficulties of
“unsupervised learning.” Deep learning uses “supervised learning,” meaning the
convolutional neural net is trained using labeled data (think images from
ImageNet). Using unsupervised learning, a convolutional neural net is given
unlabeled data, and is then asked to seek out recurring patterns.
The Cat Experiment used a neural net spread over 1,000 computers. Ten million
“unlabeled” images were taken randomly from YouTube, shown to the system,
and then the training software was allowed to run. At the end of the training,
one neuron in the highest layer was found to respond strongly to the images of
cats. Andrew Ng, the project’s founder said, “We also found a neuron that
responded very strongly to human faces.” Unsupervised learning remains a
significant goal in the field of deep learning.
The Generative Adversarial Neural Network (GAN) was introduced in 2014.
GAN was created by Ian Goodfellow. With GAN, two neural networks play
against each other in a game. The goal of the game is for one network to imitate
a photo, and trick its opponent into believing it is real. The opponent is, of
course, looking for flaws. The game is played until the near perfect photo tricks
the opponent. GAN provides a way to perfect a product (and has also begun
being used by scammers).

Probabilistic Theory of Deep Learning
The Probabilistic Theory of Deep Learning (PTDL) is a framework aimed at
understanding and explaining the behavior of deep neural networks (DNNs)
through a probabilistic lens. It seeks to bridge the gap between traditional
machine learning and deep learning by integrating probabilistic models with
deep learning architectures.
The probabilistic neural networks employs deep neural networks that utilize
probabilistic layers which can represent and process uncertainty; the deep
probabilistic models uses probabilistic models that incorporate deep neural
network components which capture complex non-linear stochastic
relationships between the random variables.
The main advantages of probabilistic models are that these can capture the
uncertainties in most real-world applications and provide essential information
for decision making.
Probabilistic deep learning aims to address this limitation by incorporating
uncertainty estimation into deep learning models. This can be achieved through
various approaches:

• Bayesian Neural Networks (BNNs): BNNs treat model parameters as
random variables with prior distributions. By inferring the posterior
distribution of these parameters given the data, BNNs can provide not
only point estimates but also uncertainty estimates for predictions.

• Variational Inference: Variational inference is a technique used to
approximate complex posterior distributions with simpler distributions.
In the context of deep learning, variational inference can be used to
approximate the posterior distribution of neural network weights,
enabling uncertainty estimation.

• Dropout as Bayesian Approximation: Dropout is a regularization
technique commonly used in deep learning to prevent overfitting.
Interestingly, dropout can also be interpreted as a form of approximate
Bayesian inference, where dropout during training can be seen as
sampling from a distribution over possible neural network architecture.
This can be leveraged to estimate uncertainty in predictions.

• Gaussian Processes (GPs): GPs are a powerful probabilistic modeling
tool that can model distributions over functions. By combining GPs with
deep neural networks, researchers have developed methods like Deep
Gaussian Processes (DGPs), which provide uncertainty estimates while
leveraging the representational power of deep learning architectures.

• Monte Carlo Dropout: Monte Carlo Dropout extends dropout to the

testing phase by performing multiple stochastic forward passes through
the network with dropout turned on. This allows for the estimation of
predictive uncertainty by observing the variance of predictions across
these passes.

• Ensemble Methods: Ensemble methods involve training multiple neural
networks with different initializations or architectures and averaging
their predictions. Ensemble methods naturally provide uncertainty
estimates through the variance of predictions across the ensemble
members.

Gradient Learning

"Gradient learning" typically refers to the process of updating the
parameters of a model, often a neural network, using gradient descent
optimization algorithms. Gradient descent is a fundamental optimization
technique used to minimize the loss function of a model by iteratively
adjusting its parameters in the direction of steepest descent of the loss
function.

Gradient learning is essential for training neural networks and is the
foundation of many deep learning algorithms.

Deep Learning Framework

• Neural Networks

• Convolutional NNs

• Recurrent NNs

Incorporating

Uncertainty

Applications of Probabilistic Theory of Deep

Learning

• Medical Diagnosis

• Autonomous Driving

• Financial Modeling

• Robotics

• Natural Language Processing

• Uncertainty Quantization

Variants of gradient descent, such as

1. Stochastic gradient descent (SGD)
2. Mini-batch gradient descent
3. Adaptive learning rate methods like Adam are commonly used in
practice to improve convergence speed and stability during training.
Neural networks are usually trained by using iterative, gradient-based
optimizers. Gradient- based learning draws on the fact that it is generally
much easier to minimize a reasonably smooth, continuous function than
a discrete function.

• The loss function can be minimized by estimating the impact of
small variations of the parameter values on the loss function.
Convex optimization converges starting from any initial
parameters.

• Stochastic gradient descent applied to non-convex loss functions
has no such convergence guarantee and is sensitive to the values of
the initial parameters.

• For feedforward neural networks, it is important to initialize all
weights to small random values. The biases may be initialized to
zero or to small positive values. The iterative gradient-based
optimization algorithms used to train feedforward networks and
almost all other deep models.

Cost Function

An important aspect of the design of deep neural networks is the
cost function. They are similar to those for parametric models such
as linear models. In most cases, parametric model defines a
distribution p(y|x; 0) and simply use the principle of maximum
likelihood.
The use of cross-entropy between the training data and the
model's prediction’s function. Most modern neural networks are
trained using maximum likelihood.
Cost function is given by
J(𝐽(𝜃) = ∑ 𝑥, 𝑦~𝑝𝑑𝑎𝑡𝑎 𝐿𝑜𝑔 𝑃𝑚𝑜𝑑𝑒𝑙 (𝑌|𝑋)

The advantage of this approach to cost is that deriving cost from maximum
likelihood removes the burden of designing cost functions for each model.

Desirable property of gradient:

• Gradient must be large and predictable enough to serve as a good guide
to the learning algorithm.

Cross entropy and regularization:

• A property of cross-entropy cost used for MLE is that, it does not have a
minimum value. For discrete output variables, they cannot represent
probability of zero or one but come arbitrarily close. Logistic regression
is an example.

• For real-valued output variables it becomes possible to assign extremely
high density to correct training set outputs, e.g, by learning the variance
parameter of Gaussian output and the resulting cross-entropy
approaches negative infinity.

Learning conditional statistics:

• Instead of learning a full probability distribution, we often want to learn
just one conditional statistic of y given x.

Learning a function:

• If we have a sufficiently powerful neural network, we can think of it as
being powerful enough to determine any function "f". This function is
limited only by boundedness and continuity.

• From this point of view, cost function is a function rather than a function.
• View cost as a functional, not a function. We can think of learning as a task

of choosing a function rather than a set of parameters. We can design our
cost function to have its minimum occur at a specific function we desire.
For example, design the cost functional to have its minimum lie on the
function that maps x to the expected value of y given x.

Chain Rule and Backpropagation

• The chain rule and backpropagation are fundamental concepts in the
training of neural networks, especially in the context of gradient-based
optimization.

• Backpropagation is a training method used for a multi-layer neural
network. It is also called the generalized delta rule. It is a gradient descent
method, which minimizes the total squared error of the output computed
by the net.

• The backpropagation algorithm looks for the minimum value of the error
function in weight space using a technique called the delta rule or
gradient descent. The weights that minimize the error function is then
considered to be a solution to the learning problem.

• Backpropagation is a systematic method for training multiple layer ANN.
It is a generalization of Widrow-Hoff error correction rule. 80 % of ANN
applications uses backpropagation.

• The Figure given below shows backpropagation network.

Here's an explanation of each:
Consider a simple neuron:

• Neuron has a summing junction and activation function.
• Any nonlinear function which differentiable everywhere and increases

everywhere with sum can be used as activation function.
• Examples: Logistic function, arc tangent function, hyperbolic tangent

activation function.
These activation function makes the multilayer network to have greater
representational power than single layer network only when non-linearity is
introduced.
Need of hidden layers:
1. A network with only two layers (input and output) can only represent the
input with whatever representation already exists in the input data.
2. If the data is discontinuous or non-linearly separable, the innate
representation is inconsistent, and the mapping cannot be learned using two
layers (Input and Output).

3. Therefore, hidden layer(s) are used between input and output layers.
• Weights connects unit (neuron) in one layer only to those in the next

higher layer. The output of the unit is scaled by the value of the connecting
weight, and it is fed forward to provide a portion of the activation for the
units in the next higher layer.

• Backpropagation can be applied to an artificial neural network with any
number of hidden layers. The training objective is to adjust the weights
so that the application of a set of inputs produces the desired outputs.

Training procedure:

The network is usually trained with a large number of input-output pairs.

Training Algorithm

1. Generate weights randomly to small random values (both positive and
negative) ensure that the network is not saturated by large values of weights.
2. Choose a training pair from the training set.
3. Apply the input vector to network input.
4. Calculate the network output.
5. Calculate the error, the difference between the network output and the
desired output.
6. Adjust the weights of the network in a way that minimizes this error.
7. Repeat steps 2 - 6 for each pair of input-output in the training set until the
error for the entire system is acceptably low.

Forward pass and backward pass:

• Backpropagation neural network training involves two passes.
1. In the forward pass, the input signals moves forward from the network input
to the output.
2. In the backward pass, the calculated error signals propagate backward
through the network, where they are used to adjust the weights.
3. In the forward pass, the calculation of the output is carried out, layer by layer,
in the forward direction. The output of one layer is the input to the next layer.

In the reverse pass,
a. The weights of the output neuron layer are adjusted first since the target
value of each output neuron is available to guide the adjustment of the
associated weights, using the delta rule.
b. Next, we adjust the weights of the middle layers. As the middle layer neurons
have no target values, it makes the problem complex.

Regularization: Dataset Augmentation
Regularization techniques are essential for preventing overfitting in machine
learning models, including neural networks.
Dataset augmentation is one such technique used to enhance the generalization
ability of models by artificially increasing the size and diversity of the training
dataset.

Heuristic data augmentation schemes often rely on the composition of a set of
simple transformation functions (TFs) such as rotations and flips (see Figure).
When chosen carefully, data augmentation schemes tuned by human experts
can improve model performance. However, such heuristic strategies in practice
can cause large variances in end model performance and may not produce
augmentations needed for state-of-the-art models.

Data augmentation can be defined as the technique used to improve the
diversity of the data by slightly modifying copies of already existing data or
newly create synthetic data from the existing data. It is used to regularize the
data and it also helps to reduce overfitting. Some of the techniques used for data
augmentation are :
1. Rotation (Range 0-360 degrees)
2. flipping (true or false for horizontal flip and vertical flip)
3. Shear range (image is shifted along x-axis or y-axis)
4. Brightness or Contrast range (image is made lighter or darker)
5. Cropping (resize the image)
6. Scale (image is scaled outward or inward)
7. Saturation (depth or intensity of the image)
Here's how dataset augmentation works within the context of regularization:

Dataset Augmentation:

Dataset augmentation involves applying a variety of transformations to the
original training data to create new, slightly modified samples. These

transformations typically preserve the semantic content of the data while
introducing variability that can help the model learn more robust and invariant
features.

Common transformations include:

• Geometric transformations: Rotation, translation, scaling, cropping,
and flipping of images.

• Color transformations: Adjusting brightness, contrast, saturation, and
hue of images.

• Noise injection: Adding random noise to images or other data samples.
• Random cropping and padding: Extracting random crops or adding

random padding to images.

By applying these transformations to the training data, the dataset is effectively
expanded, providing the model with more diverse examples to learn from. This
helps prevent overfitting by exposing the model to a wider range of variations
in the data distribution.

Regularization Effect:

Dataset augmentation acts as a form of regularization by introducing noise and
variability into the training process. This helps to prevent the model from
memorizing the training examples and encourages it to learn more
generalizable features that are invariant to the transformations applied during
augmentation.

Additionally, dataset augmentation encourages the model to learn features that
are robust to variations commonly encountered in real-world scenarios.
For example, by augmenting images with random rotations and translations,
the model learns to recognize objects from different viewpoints and positions,
leading to improved generalization performance.

Implementation:

Dataset augmentation is typically applied during the training phase, where each
training sample is randomly transformed before being fed into the model for
training. The transformed samples are treated as additional training data,
effectively enlarging the training dataset.

Modern deep learning frameworks often provide built-in support for dataset
augmentation through data preprocessing pipelines or dedicated augmentation
modules. These frameworks allow users to easily specify the desired
transformations and apply them to the training data on-the-fly during training.

Applying the chain rule
Let’s use the chain rule to calculate the derivative of cost with respect to any
weight in the network. The chain rule will help us identify how much each
weight contributes to our overall error and the direction to update each weight
to reduce our error. Here are the equations we need to make a prediction and
calculate total error, or cost:

Given a network consisting of a single neuron, total cost could be calculated as:

Noise robustness

In the context of machine learning, and particularly deep learning, refers to the
ability of a model to maintain its performance and make accurate predictions
even when presented with noisy or corrupted input data. Noise in data can arise
from various sources, including sensor errors, transmission errors,
environmental factors, or imperfections in data collection processes.
Here's how noise robustness is addressed in machine learning, particularly in
deep learning:

1. Data Preprocessing:
• Noise Removal: In some cases, it's possible to preprocess the data to

remove or reduce noise before feeding it into the model. Techniques such
as denoising filters, signal processing methods, or data cleaning
algorithms can be employed to mitigate noise in the data.

2. Model Architecture:

• Robust Architectures: Designing models with architectures that are
inherently robust to noise can help improve noise robustness. For
example, architectures with skip connections or residual connections
(e.g., ResNet) can help propagate information more effectively through
the network, making them more resilient to noise.

• Dropout: Dropout regularization, which randomly drops units (along
with their connections) during training, can act as a form of noise
injection. This helps prevent overfitting and encourages the model to
learn more robust features that are less sensitive to noise in the input
data.

3. Data Augmentation:

• Augmentation with Noise: As mentioned earlier, dataset augmentation
can help improve noise robustness by exposing the model to a wider
range of data variations, including noisy samples. Augmenting the
training data with artificially added noise can help the model learn to
ignore irrelevant noise while focusing on the relevant signal in the data.

4. Training Strategies:

• Adversarial Training: Adversarial training involves training the model
on adversarially perturbed examples generated by adding carefully
crafted noise to the input data. This helps the model learn to be robust
against adversarial attacks, which can be considered as a form of noise.

5. Uncertainty Estimation:
• Probabilistic Models: Probabilistic deep learning models, such as

Bayesian neural networks or ensemble methods, can provide uncertainty
estimates along with predictions. These uncertainty estimates can help
the model recognize when it's uncertain about its predictions, which is
particularly useful in the presence of noisy or ambiguous input data.

6. Transfer Learning:
• Pretrained Models: Transfer learning from pretrained models trained

on large datasets can help improve noise robustness. Pretrained models
have learned robust features from vast amounts of data, which can
generalize well even in the presence of noise in the target domain.

Early Stopping, Bagging and Dropout

Early Stopping:
Early stopping is a regularization technique used to prevent overfitting during
the training of machine learning models, including neural networks. The basic
idea is to monitor the performance of the model on a separate validation set
during training. Training is stopped early (i.e., before the model starts to overfit)
when the performance on the validation set starts to degrade.
Specifically, early stopping involves:

• Monitoring Validation Loss: During training, the performance of the
model is evaluated periodically on a validation set. The validation loss (or
other evaluation metric) is calculated to assess the generalization
performance of the model.

• Stopping Criteria: Training is stopped when the validation loss stops
improving or starts to increase for a certain number of epochs. This
prevents the model from overfitting to the training data.

Early stopping helps find the optimal point in the training process where the
model generalizes best to unseen data, thus improving its ability to make
accurate predictions on new samples.

Bagging (Bootstrap Aggregating):
Bagging is an ensemble learning technique that aims to improve the
performance and robustness of machine learning models by combining
predictions from multiple base models. It involves training multiple instances
of the same base model on different subsets of the training data, typically using
bootstrapping (sampling with replacement).

The key steps in bagging are:

• Bootstrap Sampling: Randomly sample subsets of the training data with
replacement to create multiple training sets.

• Base Model Training: Train a base model (e.g., decision tree, neural
network) on each bootstrap sample independently.

• Combination of Predictions: Combine the predictions of the base
models by averaging (for regression) or voting (for classification) to
make the final prediction.

Bagging helps reduce variance and improve the stability of predictions by
leveraging the diversity of base models trained on different subsets of the data.

Pseudocode:
1. Given training data (x₁, y₁), (xm, ym)
2. For t = 1, T:

a. Form bootstrap replicate dataset S, by selecting m random examples
from the training set with replacement.
b. Let h, be the result of training base learning algorithm on St

Output Combined Classifier:
𝐻(𝑥) = 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦(ℎ1(𝑥) … … ℎ𝑡(𝑥))

Dropout:
Dropout is a regularization technique specifically designed for training neural
networks to prevent overfitting. It involves randomly "dropping out" (i.e.,
deactivating) a fraction of neurons during training.
The key aspects of dropout are:

• Random Deactivation: During each training iteration, a fraction of
neurons in the network is randomly set to zero with a probability p,
typically chosen between 0.2 and 0.5.

• Training and Inference: Dropout is only applied during training. During
inference (i.e., making predictions), all neurons are active, but their
outputs are scaled by the dropout probability p to maintain the expected
output magnitude.

• Ensemble Effect: Dropout can be interpreted as training an ensemble of
exponentially many subnetworks, which encourages the network to learn
more robust and generalizable features.

Dropout effectively prevents the co-adaptation of neurons and encourages the
network to learn more distributed representations, leading to improved
generalization performance.

Note: These techniques—early stopping, bagging, and dropout—are powerful
tools for preventing overfitting and improving the generalization performance
of machine learning models, including neural networks. By incorporating these
techniques into the training process, models can become more robust and
reliable, making them better suited for real-world applications.
Batch Normalization
Batch normalization is a popular technique used in deep neural networks to
stabilize and accelerate the training process. It addresses the problem of
internal covariate shift, which refers to the change in the distribution of
network activations during training due to changes in the parameters of earlier
layers.

Here's how batch normalization works:

The normalization step is as follows:
1. Calculate the mean and variance of the activations for each feature in a mini-
batch.
2. Normalize the activations of each feature by subtracting the mini-batch mean
and dividing by the mini-batch standard deviation.
3. Scale and shift the normalized values using the learnable parameters gamma
and beta, which allow the network to undo the normalization if that is what the
learned behavior requires.

Benefits of Batch Normalization
Batch normalization offers several benefits to the training process of deep
neural networks:

• Improved Optimization: It allows the use of higher learning rates,
speeding up the training process by reducing the careful tuning of
parameters.

• Regularization: It adds a slight noise to the activations, similar to
dropout. This can help to regularize the model and reduce overfitting.

• Reduced Sensitivity to Initialization: It makes the network less
sensitive to the initial starting weights.

• Allows Deeper Networks: By reducing internal covariate shift, batch
normalization allows for the training of deeper networks.

VC Dimension and Neural Nets
The Vapnik-Chervonenkis (VC) dimension is a concept from statistical learning
theory that provides a measure of the capacity or complexity of a hypothesis
space—the set of all possible functions that a learning algorithm can choose
from to fit the training data. In the context of neural networks, the VC dimension
plays an important role in understanding the expressiveness and generalization
ability of different network architectures.

Shattering set of examples:
Assume a binary classification problem with N examples RD and consider the
set of 2|N| possible dichotomies. For instance, with N = 3 examples, set of all
possible dichotomies is {(000), (001), (010), (011), (100), (101), (110), (111)}.
A class of functions is said to shatter the dataset if, for every possible dichotomy,
there is a function 𝑓(𝛼) that models it.
Consider as an example a finite concept class C = {c1,…,c4} applied to three
instance vectors with the results :

 X1 X2 X3

C1 1 1 1
C2 0 1 1
C3 1 0 0
C4 0 0 0

Then:
𝜋𝑐({𝑥1}) = {(0), (1)}
𝜋𝑐 ({𝑥1 , 𝑥3}) = {(0,0), (0, 1), (1,0), (1, 1)}
𝜋𝑐 ({𝑥2 , 𝑥3}) = {(0,0), (1,1)}

• VC dimension VC(f) is the size of the largest dataset that can be shattered
by the set of function 𝑓(𝛼).

• If the VC Dimension of (𝛼) is h, then there exists at least one set of h points
that can be shattered by (𝛼), but in general it will not be true that every
set of h points can be shattered.

• VC dimension cannot be accurately estimated for non-linear models such
as neural networks. The VC dimension may be infinite requiring an
infinite amount of data.

VC Dimension for Neural Networks

Unit 5
Recurrent Neural Networks: Introduction – Recursive Neural Networks –
Bidirectional RNNs – Deep Recurrent Networks – Applications: Image
Generation, Image Compression, Natural Language Processing. Complete Auto
encoder, Regularized Autoencoder, Stochastic Encoders and Decoders,
Contractive Encoders.

Recurrent Neural Networks: Introduction

• Recurrent Neural Networks (RNNs) are a type of artificial neural network
designed to effectively deal with sequential data, where the order of
elements matters.

• Unlike feedforward neural networks, where the flow of data is strictly
forward, RNNs have connections that form directed cycles, allowing them
to exhibit dynamic temporal behavior.

• This makes RNNs particularly suitable for tasks such as time series
prediction, natural language processing (NLP), speech recognition, and
more.

• However, if we have data in a sequence such that one data point depends
upon the previous data point, we need to modify the neural network to
incorporate the dependencies between these data points.

• RNNs have the concept of “memory” that helps them store the states or
information of previous inputs to generate the next output of the
sequence.

A simple RNN has a feedback loop, as shown in the first diagram of the above
figure.
The feedback loop shown in the gray rectangle can be unrolled in three-time
steps to produce the second network of the above figure. Of course, you can vary
the architecture so that the network unrolls 𝑘 time steps. In the figure, the
following notation is used:

Hence, in the feedforward pass of an RNN, the network computes the values of
the hidden units and the output after 𝑘 time steps. The weights associated with
the network are shared temporally.
Each recurrent layer has two sets of weights:

• One for the input
• Second for the hidden unit
• The last feedforward layer, which computes the final output for the kth

time step, is just like an ordinary layer of a traditional feedforward
network.

Why Recurrent Neural Networks?

Recurrent Neural Networks have unique capacities as opposed to other kinds
of Neural Networks, which open a wide range of possibilities for their users still
also bringing some challenges with them. Then’s a rundown of the main
benefits

• It’s the only neural network with memory and binary data processing.
• It can plan out several inputs and productions. Unlike other algorithms

that deliver one product for one input, the benefit of RNN is that it can
plot out many to many, one to many, and many to one input and
productions.

Types of Recurrent Neural Networks
There are four types of Recurrent Neural Networks:

• One to One
This type of neural network is understood because the Vanilla Neural
Network. It’s used for general machine learning problems, which
contains a single input and one output.

• One to Many

This type of neural network incorporates a single input and multiple
outputs. An example of this is often the image caption.

• Many to One

This RNN takes a sequence of inputs and generates one output. Sentiment
analysis may be a example of this sort of network where a given sentence
are often classified as expressing positive or negative sentiments.

• Many to Many
This RNN takes a sequence of inputs and generates a sequence of outputs.
artificial intelligence is one among the examples.

Two Issues of Standard RNNs
1. Vanishing Gradient Problem

• Recurrent Neural Networks enable you to model time-dependent and
sequential data problems, like stock exchange prediction, artificial
intelligence, and text generation. you’ll find, however, RNN is tough to
train due to the gradient problem.

• RNNs suffer from the matter of vanishing gradients. The gradients carry
information utilized in the RNN, and when the gradient becomes too
small, the parameter updates become insignificant. This makes the
training of long data sequences difficult.

2. Exploding Gradient Problem

• While training a neural network, if the slope tends to grow exponentially
rather than decaying, this is often called an Exploding Gradient.

• This problem arises when large error gradients accumulate, leading to
very large updates to the neural network model weights during the
training process.

Now, let’s discuss the foremost popular and efficient thanks to cope with
gradient problems, i.e., Long immediate memory Network (LSTMs).

First, let’s understand Long-Term Dependencies.

Suppose you wish to predict the last word within the text: “The clouds
are within the ______.”
The most obvious answer to the present is that the “sky.” We don’t need
from now on context to predict the last word within the above sentence.
Consider this sentence: “I are staying in Spain for the last 10 years…I can
speak fluent ______.”
The word you are expecting will rely on the previous couple of words in
context. Here, you would like the context of Spain to predict the last word
within the text, and also the most fitted answer to the present sentence
is “Spanish.” The gap between the relevant information and the point
where it’s needed may became very large. LSTMs facilitate to solve this
problem.

Recursive Neural Networks (ReNNs)
Recursive Neural Networks (ReNNs) are a type of neural network

architecture designed to process structured data, such as hierarchical
data structures or recursive structures. Unlike traditional feedforward or
recurrent neural networks, which operate on fixed-sized input vectors or
sequences, ReNNs operate on tree-like or graph-like structures, allowing
them to model relationships between elements in a hierarchical manner.

Due to their deep tree-like structure, Recursive Neural Networks

can handle hierarchical data. The tree structure means combining child
nodes and producing parent nodes. Each child-parent bond has a weight
matrix, and similar children have the same weights. The number of
children for every node in the tree is fixed to enable it to perform
recursive operations and use the same weights. RvNNs are used when
there's a need to parse an entire sentence.

Difference between Recurrent neural network and recursive
neural networks

Aspect Recurrent Neural Networks

(RNNs)
Recursive Neural Networks

(ReNNs)
Architecture Sequential architecture, nodes

connected to previous time
steps

Hierarchical or recursive
architecture, nodes connected in
a tree-like or graph-like
structure.

Data
Structure

Operates on sequential data
where order matters

Handles structured data with
hierarchical or recursive
relationships

Training Typically trained using
backpropagation through time
(BPTT)

May involve specialized
algorithms for handling the
recursive structure (e.g., BPTS)

Applications Language modeling, machine
translation, sentiment analysis,
time series prediction

Parsing syntactic or semantic
structures in NLP, analyzing
hierarchical structures in images
or videos, processing hierarchical
data in bioinformatics

A Recursive Neural Networks is more like a hierarchical network where
there is really no time aspect to the input sequence but the input has to
be processed hierarchically in a tree fashion. Here is an example of how a
recursive neural network looks. It shows the way to learn a parse tree of
a sentence by recursively taking the output of the operation performed
on a smaller chunk of the text.

• The children of each parent node are just a node like that node.

RvNNs comprise a class of architectures that can work with
structured input. The network looks at a series of inputs, each time
at x1, x2… and prints the results of each of these inputs.

• This means that the output depends on the number of neurons in
each layer of the network and the number of connections between
them. The simplest form of a RvNNs, the vanilla RNG, resembles a
regular neural network. Each layer contains a loop that allows the
model to transfer the results of previous neurons from another
layer.

• Schematically, RvNN layer uses a loop to iterate through a
timestamp sequence while maintaining an internal state that
encodes all the information about that timestamp it has seen so far.

Features of Recursive Neural Networks
• A recursive neural network is created in such a way that it includes

applying same set of weights with different graph like structures.
• The nodes are traversed in topological order.
• This type of network is trained by the reverse mode of automatic

differentiation.
• Natural language processing includes a special case of recursive

neural networks.
• This recursive neural tensor network includes various

composition functional nodes in the tree.
Challenges:
While Recursive Neural Networks offer advantages for modelling
structured data, they also come with challenges:

• Computational Complexity: Processing recursive structures can be
computationally expensive, especially for deep trees or graphs with many
nodes.

• Data Representation: Representing complex structures in a fixed-
dimensional vector space can be challenging, especially for structures
with varying sizes or irregularities.

• Training Difficulty: Training ReNNs may require specialized algorithms
and techniques to handle the recursive nature of the network and
mitigate issues such as vanishing gradients.

Bidirectional Recurrent Neural Networks (Bi-RNNs)

Bidirectional Recurrent Neural Networks (Bi-RNNs) are an extension of
traditional Recurrent Neural Networks (RNNs) that can capture both past and
future information at each time step. In standard RNNs, the prediction at a given
time step depends only on the past history of the sequence. However, in many
applications, it's beneficial to consider both past and future context to make
better predictions.
The architecture of a Bidirectional RNN involves two separate recurrent layers:

1. One processing the input sequence in the forward direction
2. Another processing the sequence in the backward direction.

Each layer computes hidden states at each time step, considering

information from both past and future context. The final output at each time
step is typically a concatenation of the forward and backward hidden states.

Working of Bidirectional Recurrent Neural Network

Inputting a sequence:
A sequence of data points, each represented as a vector with the same
dimensionality, are fed into a BRNN. The sequence might have different lengths.

Dual Processing:

Both the forward and backward directions are used to process the data. On the
basis of the input at that step and the hidden state at step t-1, the hidden state
at time step t is determined in the forward direction. The input at step t and the
hidden state at step t+1 are used to calculate the hidden state at step t in a
reverse way.

Computing the hidden state:

A non-linear activation function on the weighted sum of the input and previous
hidden state is used to calculate the hidden state at each step. This creates a
memory mechanism that enables the network to remember data from earlier
steps in the process.

Determining the output:

A non-linear activation function is used to determine the output at each step
from the weighted sum of the hidden state and a number of output weights. This
output has two options: it can be the final output or input for another layer in
the network.

Training:

The network is trained through a supervised learning approach where the goal
is to minimize the discrepancy between the predicted output and the actual
output. The network adjusts its weights in the input-to-hidden and hidden-to-
output connections during training through backpropagation.
To calculate the output from an RNN unit, we use the following formula:

where,
A = activation function, W = weight matrix, b = bias

The training of a BRNN is similar to backpropagation through a time
algorithm. BPTT algorithm works as follows:

• Roll out the network and calculate errors at each iteration
• Update weights and roll up the network.

However, because forward and backward passes in a BRNN occur
simultaneously, updating the weights for the two processes may occur at the
same time. This produces inaccurate outcomes. Thus, the following approach is

used to train a BRNN to accommodate forward and backward passes
individually.

Advantages of Bidirectional RNN

• Context from both past and future:
With the ability to process sequential input both forward and backward,
BRNNs provide a thorough grasp of the full context of a sequence.
Because of this, BRNNs are effective at tasks like sentiment analysis and
speech recognition.

• Enhanced accuracy:
BRNNs frequently yield more precise answers since they take both
historical and upcoming data into account.

• Efficient handling of variable-length sequences:
When compared to conventional RNNs, which require padding to have a
constant length, BRNNs are better equipped to handle variable-length
sequences.

• Resilience to noise and irrelevant information:
BRNNs may be resistant to noise and irrelevant data that are present in
the data. This is so because both the forward and backward paths offer
useful information that supports the predictions made by the network.

• Ability to handle sequential dependencies:
BRNNs can capture long-term links between sequence pieces, making
them extremely adept at handling complicated sequential dependencies.

Applications of Bidirectional Recurrent Neural Network

Bi-RNNs have been applied to various natural language processing (NLP) tasks,
including:

• Sentiment Analysis:
By taking into account both the prior and subsequent context, BRNNs can
be utilized to categorize the sentiment of a particular sentence.

• Named Entity Recognition:
By considering the context both before and after the stated thing, BRNNs
can be utilized to identify those entities in a sentence.

• Part-of-Speech Tagging:
The classification of words in a phrase into their corresponding parts of
speech, such as nouns, verbs, adjectives, etc., can be done using BRNNs.

• Machine Translation:
BRNNs can be used in encoder-decoder models for machine translation,
where the decoder creates the target sentence and the encoder analyses
the source sentence in both directions to capture its context.

• Speech Recognition:
When the input voice signal is processed in both directions to capture the
contextual information, BRNNs can be used in automatic speech
recognition systems.

Disadvantages of Bidirectional RNN

• Computational complexity:
Given that they analyze data both forward and backward, BRNNs can be
computationally expensive due to the increased amount of calculations
needed.

• Long training time:
BRNNs can also take a while to train because there are many parameters
to optimize, especially when using huge datasets.

• Difficulty in parallelization:
Due to the requirement for sequential processing in both the forward and
backward directions, BRNNs can be challenging to parallelize.

• Overfitting:
BRNNs are prone to overfitting since they include many parameters that
might result in too complicated models, especially when trained on short
datasets.

• Interpretability:
Due to the processing of data in both forward and backward directions,
BRNNs can be tricky to interpret since it can be difficult to comprehend
what the model is doing and how it is producing predictions.

Deep recurrent networks (DRNs)

• Deep recurrent networks (DRNs) are a class of neural networks that
combine the concepts of deep learning and recurrent neural networks
(RNNs).

• RNNs are a type of neural network designed to work with sequential data,
where the output of each step is dependent on the previous steps.

• This makes them particularly suitable for tasks like natural language

processing (NLP), time series prediction, and speech recognition.

• Deep recurrent networks extend the capabilities of traditional RNNs by
stacking multiple layers of recurrent units, allowing for the creation of
deeper architectures.

• Each layer in a DRN passes its output as input to the next layer, enabling

the network to learn hierarchical representations of sequential data.

• Deep recurrent networks have been successfully applied to various tasks,
including sequence prediction, language modeling, machine translation,
and speech recognition.

• They have demonstrated superior performance compared to shallow

recurrent networks in many cases, especially when dealing with complex
sequential data with long-range dependencies.

There are several types of recurrent units that can be used in deep recurrent
networks, such as:

• Vanilla RNNs:
These are the simplest form of recurrent units, where the output is
computed based on the current input and the previous hidden state.

• Long Short-Term Memory (LSTM):
LSTMs are a type of recurrent unit that introduces gating mechanisms to
control the flow of information within the network, allowing it to learn
long-range dependencies more effectively and mitigate the vanishing
gradient problem.

• Gated Recurrent Units (GRUs):
GRUs are like LSTMs but have a simpler structure with fewer parameters,
making them computationally more efficient.

Steps to develop a deep RNN application
Developing an end-to-end deep RNN application involves several steps,
including data preparation, model architecture design, training the model, and
deploying it. Here is an example of an end-to-end deep RNN application for
sentiment analysis.

Data preparation:
The first step is to gather and preprocess the data. In this case, we’ll need a
dataset of text reviews labelled with positive or negative sentiment. The text
data needs to be cleaned, tokenized, and converted to the numerical format.
This can be done using libraries like NLTK or spaCy in Python.

Model architecture design:
The next step is to design the deep RNN architecture. We’ll need to decide on
the number of layers, number of hidden units, and type of recurrent unit (e.g.
LSTM or GRU). We’ll also need to decide how to handle the input and output
sequences, such as using padding or truncation.

Training the model:
Once the architecture is designed, we’ll need to train the model using the
preprocessed data. We’ll split the data into training and validation sets and train
the model using an optimization algorithm like stochastic gradient descent.
We’ll also need to set hyperparameters like learning rate and batch size.

Evaluating the model:
After training, we’ll evaluate the model’s performance on a separate test set.
We’ll use metrics like accuracy, precision, recall, and F1 score to assess the
model’s performance.

Deploying the model:
Finally, we’ll deploy the trained model to a production environment, where it
can be used to classify sentiment in real-time. This could involve integrating the
model into a web application or API.

Processing Diagram of Deep Recurrent Networks

This block diagram provides a high-level overview of the architecture of a
deep recurrent network.

Input Sequence

Embedding

Layer

Recurrent Layer

(Multiple layers stacked together)

Output Layer

(Eg. Softmax)

Output

(Predictions)

• Input Sequence:
This is the sequential data fed into the network. It could be text, time-
series data, audio, etc.

• Embedding Layer:
Converts the input sequence into a dense representation suitable for
processing by the recurrent layers. It typically involves mapping each
element of the sequence (e.g., word or data point) to a high-dimensional
vector space.

• Recurrent Layers:
Consist of multiple recurrent units stacked together. Each layer processes
the input sequence sequentially, capturing temporal dependencies.
Common types of recurrent units include vanilla RNNs, LSTMs, and GRUs.

• Output Layer:
Takes the output from the recurrent layers and produces the final
prediction or output. The structure of this layer depends on the specific
task, such as classification (e.g., softmax activation) or regression (e.g.,
linear activation).

• Output (Prediction):
The final output of the network, which could be a sequence of predictions
for each time step or a single prediction for the entire sequence,
depending on the task.

Deep recurrent networks (DRNs) offer several advantages:

• Hierarchical Representation Learning:
With multiple layers of recurrent units, DRNs can learn hierarchical
representations of sequential data. Each layer can capture different levels
of abstraction, allowing the network to extract complex features from the
input sequence.

• Modeling Long-term Dependencies:
Deep architectures enable DRNs to capture long-range dependencies in
sequential data more effectively. By stacking recurrent layers, the
network can maintain and propagate information over longer sequences,
which is crucial for tasks involving context or memory over extended
periods.

• Improved Expressiveness:
Deeper architectures provide more expressive power, allowing DRNs to
learn complex patterns and relationships within sequential data. This
increased expressiveness can lead to better performance on tasks that
require modeling intricate dependencies or understanding subtle
variations in the data.

• Better Feature Abstraction:
Each layer in a DRN learns to abstract features from the input sequence,
leading to a hierarchy of representations. This hierarchical feature
extraction can facilitate learning informative and discriminative features,
which are essential for tasks like sequence classification, language
modeling, and machine translation.

• Transfer Learning:
Pre-training deep recurrent networks on large-scale datasets for related
tasks (e.g., language modeling) and fine-tuning them for specific tasks
often leads to improved performance. The hierarchical representations
learned during pre-training capture generic features of the data, which
can be beneficial for downstream tasks with limited labeled data.

Disadvantages of Deep recurrent networks (DRNs)

• Vanishing/Exploding Gradient Problem:
Training deep recurrent networks can be challenging due to the
vanishing or exploding gradient problem. As gradients are
backpropagated through multiple layers during training, they can
become either extremely small (vanishing) or extremely large
(exploding), which hinders learning and stability. Techniques like
gradient clipping and careful initialization of weights are often necessary
to mitigate this issue.

• Computational Complexity:
Deep recurrent networks with multiple layers can be computationally
expensive to train and deploy, especially when dealing with large-scale
datasets or complex architectures. The computational complexity
increases with the number of layers, making it challenging to train deep
models on resource-constrained devices or in real-time applications.

• Long Training Time:
Training deep recurrent networks requires significant computational
resources and time, especially when dealing with large datasets and
complex architectures. The training process often involves multiple
iterations over the entire dataset, which can take hours, days, or even
weeks depending on the size of the data and the complexity of the model.

• Overfitting:
Deep recurrent networks are prone to overfitting, especially when
dealing with small datasets or overly complex models. With a large
number of parameters, deep models have a high capacity to memorize
noise or irrelevant patterns in the training data, leading to poor
generalization performance on unseen data. Regularization techniques
such as dropout and weight decay are commonly used to prevent
overfitting.

• Difficulty in Interpretability:
Understanding the internal workings of deep recurrent networks and
interpreting their decisions can be challenging. With multiple layers of
non-linear transformations, it can be difficult to interpret the learned
representations and understand how the network arrives at a particular
prediction. This lack of interpretability can be a significant drawback in
applications where transparency and interpretability are essential.

Application: Image Generation

• Generating images using recurrent neural networks (RNNs) is an exciting

application that leverages the sequential nature of RNNs to produce
images pixel by pixel.

• While RNNs are not commonly used for image generation due to their
sequential processing nature and the high dimensionality of image data,
they can still be applied for certain types of image generation tasks.

• RNN-based approaches can still be useful in scenarios where sequential
processing or conditioning on external information is desirable.

Architecture diagram which can generate images from text descriptions:

▪ Semantic information from the textual description was used as input in

the generator model, which converts characteristic information to pixels
and generates the images.

▪ This generated image was used as input in the discriminator along with
real/wrong textual descriptions and real sample images from the dataset.

▪ A sequence of distinct (picture and text) pairings are then provided as
input to the model to meet the goals of the discriminator: input pairs of
real images and real textual descriptions, wrong images and mismatched
textual descriptions, and generated images and real textual descriptions.

▪ The real photo and real text combinations are provided so that the model
can determine if a particular image and text combination align. An
incorrect picture and real text description indicates that the image does
not match the caption.

▪ The discriminator is trained to identify real and generated images. At the
start of training, the discriminator was good at classification of
real/wrong images. Loss was calculated to improve the weight and to
provide training feedback to the generator and discriminator model.

▪ As soon as the training proceeded, the generator produced more realistic
images and it fooled the discriminator when distinguishing between real
and generated images.

Here's how it can be done:

• Text-to-Image Generation:
One common approach to image generation using RNNs is to generate
images conditioned on textual descriptions. In this setup, an RNN, such
as a Long Short-Term Memory (LSTM) network, is used to process the
input text, encoding the semantic information into a fixed-length vector
representation. This vector is then used as a conditioning input to
another network, typically a Generative Adversarial Network (GAN) or a
Variational Autoencoder (VAE), which generates the corresponding
image.

• Sequence-to-Sequence Generation:
Another approach is to directly generate images pixel by pixel using
autoregressive models. In this setup, an RNN is trained to predict the next
pixel in the image sequence given the previous pixels. This process is
repeated iteratively until the entire image is generated. Variants of RNNs,
such as PixelRNN and PixelCNN, have been proposed for this task, where
the model predicts the color value of each pixel conditioned on the
previously generated pixels.

• Conditional Image Generation:
RNNs can also be used for conditional image generation, where the
generation process is conditioned on some input information. For
example, the input could be a low-resolution image, a sketch, or a set of
object labels. The RNN processes this input and generates the
corresponding high-resolution image or completes the missing parts of
the input image.

• Data Augmentation:
RNNs can be used to generate synthetic images for data augmentation
purposes. By training an RNN to generate realistic images similar to the
training data distribution, additional training samples can be generated
to increase the diversity of the dataset and improve the generalization
performance of image classification or object detection models.

• Artistic Style Transfer:
RNNs can be used for artistic style transfer, where the style of one image
is transferred to the content of another image. In this setup, the RNN is
trained to generate an image that matches the content of one image while

incorporating the style features learned from another image. This
process typically involves optimizing a loss function that balances
content preservation and style transfer.

Application: Image Compression

▪ Image compression is a method to remove spatial redundancy between
adjacent pixels and reconstruct a high-quality image.

▪ In the past few years, deep learning has gained huge attention from the
research community and produced promising image reconstruction
results.

▪ Therefore, recent methods focused on developing deeper and more
complex networks, which significantly increased network complexity

▪ Using recurrent neural networks (RNNs) for image compression is an
innovative application that leverages the sequential processing capability
of RNNs to effectively encode and compress image data.

Architecture Diagram of image compression framework based on
Recurrent Neural Network (RNN)

In above diagram, there are three modules with two additional novel blocks in
the end-to-end framework, i.e., encoder network, analysis block, binarizer,
decoder network, and synthesis block. Image patches are directly given to the
analysis block as an input that generates latent features using the proposed
analysis encoder block. The entire framework architecture is presented in
architecture diagram.

The single iteration of the end-to-end framework is represented in below
Equation.

The training process of image compression network is optimized by adopting
the loss at each iteration based on actual weighted and predicted value.

Here's how RNNs can be applied for image compression:

▪ Sequence-to-Sequence Compression:
In this approach, the input image is divided into a sequence of patches or
blocks. Each block is then sequentially processed by an RNN, such as a
Long Short-Term Memory (LSTM) network or a Gated Recurrent Unit
(GRU). The RNN compresses the information in each block into a fixed-
length vector representation, capturing the essential features of the
image content.

▪ Hierarchical Compression:
Another approach involves using a hierarchical RNN architecture for
compression. In this setup, multiple layers of RNNs are stacked together,
with each layer processing increasingly abstract representations of the
image. The lower layers capture fine-grained details, while the higher
layers capture more global structures and patterns. This hierarchical
representation enables efficient compression of images with varying
levels of detail.

▪ Conditional Compression:
RNNs can be conditioned on contextual information to improve
compression performance. For example, the compression process can be
conditioned on the image content, image resolution, or specific
compression requirements (e.g., target compression ratio). By
incorporating additional information into the compression model, RNNs
can adapt their encoding strategy to better preserve important features
of the input image.

▪ Lossy Compression:
RNN-based compression models can be trained to perform lossy
compression, where some information in the input image is discarded to
achieve higher compression ratios. The RNN learns to prioritize
important features while discarding less critical information, resulting in
compact representations of the input images. Techniques such as
quantization and entropy coding can be combined with RNN-based
compression to further improve compression efficiency.

▪ Learned Compression Algorithms:

Instead of handcrafting compression algorithms, RNNs can be trained to
learn effective compression strategies directly from data. By optimizing
compression performance using techniques such as autoencoders or
reinforcement learning, RNN-based compression models can adapt to the
statistical properties of different types of images and achieve better
compression ratios.

Application: Natural Language Processing

▪ Natural Language Processing (NLP) using recurrent neural networks

(RNNs) is a prominent area of research and application.
▪ RNNs, with their ability to model sequential data, are well-suited for

various NLP tasks that involve understanding and generating natural
language.

▪ RNNs play a vital role in various NLP tasks by effectively modeling the
sequential nature of natural language and capturing the contextual
dependencies in text data.

▪ Their versatility and ability to handle sequential data make them a
powerful tool for understanding, generating, and processing natural
language in a wide range of applications.

▪ RNN are effective for sequential data processing. In RNN computation is
recursively applied to each instance of input sequence from previous
computed results. Recurrent unit is sequentially fed with the sequences
represented by fixed size vector of tokens.

RNN based framework for NLP is shown in Figure below:

The advantage of RNN is that it can memorize the results of previous
computation and utilize that information in current computation.
So, it is possible to model context dependencies in inputs of arbitrary length

with RNN and proper composition of input can be created.
Mainly RNNs are used in different NLP tasks like,

▪ Natural language generation (e.g. image captioning, machine translation,
visual question answering)

▪ Word - level classification (e.g. Named Entity recognition (NER))
▪ Language modelling
▪ Semantic matching
▪ Sentence-level classification (e.g., sentiment polarity)

Here are some key applications of RNNs in NLP:
✓ Sequence Modelling:

RNNs excel at sequence modelling tasks, such as language modelling and
text generation. They can be trained to predict the next word in a
sentence given the previous words, capturing the sequential
dependencies in the language. Language models based on RNNs have
been used for tasks like speech recognition, machine translation, and
autocomplete suggestions.

✓ Machine Translation:
RNNs, particularly the sequence-to-sequence (seq2seq) architecture,
have been widely used for machine translation tasks. In this setup, an
RNN encoder processes the input sentence in the source language, and
another RNN decoder generates the corresponding translation in the
target language. This approach has been extended with attention
mechanisms to handle longer sentences and improve translation quality.

✓ Sentiment Analysis:
RNNs are effective for sentiment analysis tasks, where the goal is to
determine the sentiment or opinion expressed in a piece of text. By
processing the text sequentially and capturing the contextual
information, RNNs can classify text into different sentiment categories
(e.g., positive, negative, neutral). They have been used for sentiment
analysis in social media posts, customer reviews, and news articles.

✓ Named Entity Recognition (NER):
RNNs have been applied to named entity recognition tasks, where the
goal is to identify and classify entities (e.g., persons, organizations,
locations) mentioned in text. By modelling the sequential context of the
text, RNNs can learn to recognize and classify entities based on their
surrounding words and phrases. This is useful in applications like
information extraction and text summarization.

✓ Part-of-Speech Tagging:
RNNs can be used for part-of-speech (POS) tagging, where each word in
a sentence is assigned a grammatical category (e.g., noun, verb,
adjective). By considering the sequential context of the words, RNNs can

learn to predict the POS tags more accurately, even for ambiguous cases.
POS tagging is an essential component in many NLP pipelines and
applications.

✓ Text Classification:
RNNs are commonly used for text classification tasks, such as document
categorization, topic modelling, and spam detection. By processing the
text sequentially and capturing the semantic information, RNNs can learn
to classify documents or sentences into different categories based on
their content. They have been used in various domains, including news
categorization, customer support, and email filtering.

✓ Dialogue Systems:
RNNs have been employed in dialogue systems, also known as chatbots
or conversational agents, to generate responses in natural language. By
modelling the sequential interaction between users and the system,
RNNs can generate contextually relevant and coherent responses to user
queries or prompts. Dialogue systems based on RNNs have been used in
virtual assistants, customer service bots, and language learning
applications.

Complete Auto Encoder

✓ An autoencoder is a type of artificial neural network used for
unsupervised learning of efficient data representations.

✓ Autoencoders emerge as a fascinating subset of neural networks, offering
a unique approach to unsupervised learning.

✓ Autoencoders are an adaptable and strong class of architectures for the
dynamic field of deep learning, where neural networks develop
constantly to identify complicated patterns and representations.

✓ With their ability to learn effective representations of data, these
unsupervised learning models have received considerable attention and
are useful in a wide variety of areas, from image processing to anomaly
detection.

It consists of two main components:
✓ An encoder: The encoder compresses the input data into a latent

representation.
✓ A decoder: The decoder reconstructs the original input from the latent

representation.

Architecture of Complete Auto Encoder

• Basically, autoencoders are approximators for the identity operation;

therefore learning these weights might seem trivial; but by constraining
the parameters (such as number of nodes or number of connections),
interesting representations can be uncovered in the data.

• Most real datasets are structured i.e. they have a high degree of local
correlations; usually, the autoencoder can exploit these correlations and
yield compressed representations. However, autoencoders are not
usually used for compression, rather they are used for learning the
representations which are later used for classification i.e. for feature
learning.

• Autoencoders can come in various architectures, each serving different
purposes and having different properties.

Here are some types of complete autoencoders:
• Vanilla Autoencoder:

A vanilla autoencoder consists of an encoder and a decoder where both
are fully connected neural networks. It aims to learn a compressed
representation of the input data without any specific constraints on the
learned representations.

• Sparse Autoencoder:
In a sparse autoencoder, additional constraints are imposed on the
learned representations to encourage sparsity. This can be achieved by
adding a sparsity penalty term to the loss function, such as L1
regularization or the Kullback-Leibler (KL) divergence.

• Denoising Autoencoder:
Denoising autoencoders are trained to reconstruct clean data from
corrupted inputs. During training, noise is added to the input data, and
the model is trained to reconstruct the original, noise-free data. This
helps the model learn more robust and informative representations.

• Variational Autoencoder (VAE):
VAEs are probabilistic autoencoders that learn a latent variable model of
the data. They aim to capture the underlying probability distribution of
the input data in the latent space and generate new samples by sampling
from this distribution. VAEs consist of an encoder that outputs the
parameters of a probability distribution (e.g., mean and variance) and a
decoder that samples from this distribution to generate reconstructions.

• Contractive Autoencoder:
Contractive autoencoders are trained to learn representations that are
robust to small perturbations in the input data. They achieve this by
adding a penalty term to the loss function that penalizes the Frobenius
norm of the Jacobian matrix of the encoder with respect to the input data.

• Adversarial Autoencoder (AAE):
AAEs combine autoencoders with adversarial training techniques. They
consist of an encoder-decoder pair trained to reconstruct the input data,
along with a discriminator network that tries to distinguish between the
latent representations learned by the encoder and samples from a prior
distribution.

• Convolutional Autoencoder:
Convolutional autoencoders use convolutional layers instead of fully
connected layers in both the encoder and decoder. They are particularly
well-suited for image data and can capture spatial dependencies more
effectively compared to vanilla autoencoders.

• Recurrent Autoencoder:
Recurrent autoencoders utilize recurrent neural networks (RNNs) in
either the encoder, decoder, or both. They are useful for sequential data,
such as time series or natural language sequences, and can capture
temporal dependencies in the input data.

Regularized autoencoders

• Regularized autoencoders are a type of autoencoder that incorporates
regularization techniques to improve the quality of learned
representations and prevent overfitting.

• These techniques impose additional constraints on the autoencoder's
training process, encouraging it to learn more robust and generalizable
representations of the input data.

• Regularization helps prevent the autoencoder from memorizing the
training data and capturing noise, resulting in better performance on
unseen data.

• Regularized autoencoders are widely used in various applications,
including dimensionality reduction, feature learning, data denoising, and
anomaly detection.

• By incorporating regularization techniques into the training process,
regularized autoencoders can learn more informative and generalizable
representations of the input data, leading to better performance on
downstream tasks.

Structure of Regularized Autoencoders
Let’s dive into the structural nuances that differentiate regularized
autoencoders from their traditional counterparts.
Neuronal Arrangement:
The arrangement remains like traditional autoencoders, with an encoder and a
decoder. The deviation lies in the incorporation of regularization methods
within the layers.
Activation Functions:
Regularized autoencoders may employ specific activation functions tailored for
regularization, contributing to a more balanced learning process.

Incorporating Regularization Methods:
Regularization methods, such as dropout or L1/L2 regularization, are
integrated into the architecture to curb overfitting.

Some common regularization techniques used in regularized
autoencoders include:

• L1 and L2 Regularization:
L1 and L2 regularization penalize the magnitude of the weights in the
autoencoder's neural network. By adding a regularization term to the
loss function proportional to either the L1 or L2 norm of the weights,
these techniques encourage sparsity (in the case of L1 regularization) or
small weights (in the case of L2 regularization), helping prevent
overfitting.

• Dropout:
Dropout is a regularization technique that randomly sets a fraction of the
input units to zero during each training iteration. This helps prevent the
autoencoder's neural network from relying too heavily on any individual
input features, forcing it to learn more robust representations.

• Batch Normalization:
Batch normalization normalizes the activations of each layer in the
autoencoder's neural network, helping stabilize and accelerate the
training process. By reducing internal covariate shift, batch
normalization acts as a regularizer, making the autoencoder more
resistant to overfitting.

• Noise Injection:
Noise injection involves adding noise to the input data or the activations
of the autoencoder's hidden layers during training. This helps prevent the
autoencoder from memorizing the training data and encourages it to
learn more generalizable representations.

• Contractive Regularization:
Contractive regularization penalizes the Frobenius norm of the Jacobian
matrix of the encoder with respect to the input data. This encourages the
encoder to learn representations that are invariant to small changes in
the input data, making the autoencoder more robust to variations in the
input.

Stochastic Encoders and Decoders

• Stochastic encoders and decoders are components of probabilistic
autoencoder models, such as Variational Autoencoders (VAEs).

• These components introduce stochasticity into the encoding and
decoding process, enabling the model to learn a probabilistic
representation of the input data distribution.

• Stochastic encoders and decoders in VAEs enable various applications,
including generative modelling, data synthesis, and unsupervised
representation learning.

• They provide a principled framework for learning complex data
distributions and generating new samples from these distributions.

Stochastic Encoder:
In a VAE, the encoder network outputs the parameters of a probability
distribution instead of a deterministic encoding. Instead of directly
outputting the latent representation of the input data, the encoder
outputs the mean and variance (or other parameters) of a Gaussian
distribution that represents the distribution of possible latent variables
given the input. The latent variable is then sampled from this distribution
to generate a stochastic representation.

Stochastic Decoder:
Similarly, the decoder network in a VAE accepts a sampled latent variable
as input instead of a deterministic encoding. This sampled latent variable
is generated by sampling from the distribution outputted by the encoder.
The decoder then generates the reconstructed output based on this
sampled latent variable.

Cost Function Calculation

The cost function of VAE is based on log likelihood maximization.
The cost function consists of reconstruction and regularization error
terms:

Cost = Reconstruction Error + Regularization Error

Contractive autoencoders

• Contractive autoencoders are a variant of autoencoders that incorporate

a regularization term known as contractive regularization.
• The goal of contractive regularization is to encourage the autoencoder's

encoder network to learn a more robust and stable representation of the
input data by penalizing variations in the input space.

• In a contractive autoencoder, the contractive regularization term is added
to the loss function during training. This regularization term penalizes
the Frobenius norm of the Jacobian matrix of the encoder's output with
respect to the input data.

• Intuitively, this penalizes variations in the input space by encouraging the
encoder to learn representations that are insensitive to small changes in
the input data.

• Contractive autoencoder simply targets to learn invariant
representations to unimportant transformations for the given data.

• CAE surpasses results obtained by regularizing autoencoder using
weight decay or by denoising. CAE is a better choice than denoising
autoencoder to learn useful feature extraction.

• During training, the contractive autoencoder is optimized to minimize
the reconstruction error (e.g., mean squared error) while simultaneously
minimizing the contractive regularization term.

• This encourages the encoder to learn representations that capture the
underlying structure of the data while being robust to small
perturbations in the input space.

• Contractive autoencoders have been applied in various domains,
including dimensionality reduction, feature learning, and data denoising.

• They are particularly useful in scenarios where the input data is noisy or
contains small variations, as they encourage the autoencoder to learn
stable and invariant representations of the data.

The benefits and applications of contractive autoencoders include:

• Robustness to Noise: Contractive regularization encourages the
encoder to learn representations that are robust to small variations and
noise in the input data. This makes contractive autoencoders suitable for
tasks involving noisy or corrupted data, such as denoising autoencoding

• Improved Generalization: By penalizing variations in the input space,
contractive regularization helps prevent overfitting and improves the
generalization performance of the autoencoder. This allows the model to
learn more generalizable representations of the data that can be applied
to unseen examples.

• Feature Learning: Contractive autoencoders can learn informative and
discriminative features from the input data by capturing the underlying
structure of the data distribution. These learned features can be used for
downstream tasks such as classification, clustering, or anomaly
detection.

• Dimensionality Reduction: The compact and stable representations
learned by contractive autoencoders can be used for dimensionality
reduction tasks. By projecting high-dimensional data into a lower-
dimensional space while preserving important information, contractive
autoencoders facilitate visualization, data compression, and efficient
storage.

• Unsupervised Learning: Contractive autoencoders belong to the class
of unsupervised learning algorithms, as they do not require labelled data
during training. This makes them suitable for tasks where labelled data
is scarce or expensive to obtain, allowing for the extraction of useful
information from large amounts of unlabelled data.

	UNIT -1
	What is a Cost Function?
	It is a function that measures the performance of a model for any given data. Cost Function quantifies the error between predicted values and expected values and presents it in the form of a single real number.
	After making a hypothesis with initial parameters, we calculate the Cost function. And with a goal to reduce the cost function, we modify the parameters by using the Gradient descent algorithm over the given data. Here’s the mathematical representatio...
	What is Gradient Descent?
	Gradient descent is an optimization algorithm used in machine learning to minimize the cost function by iteratively adjusting parameters in the direction of the negative gradient, aiming to find the optimal set of parameters.
	The cost function represents the discrepancy between the predicted output of the model and the actual output. The goal of gradient descent is to find the set of parameters that minimizes this discrepancy and improves the model’s performance.
	The algorithm operates by calculating the gradient of the cost function, which indicates the direction and magnitude of steepest ascent. However, since the objective is to minimize the cost function, gradient descent moves in the opposite direction of...
	By iteratively updating the model’s parameters in the negative gradient direction, gradient descent gradually converges towards the optimal set of parameters that yields the lowest cost. The learning rate, a hyperparameter, determines the step size ta...
	Gradient descent can be applied to various machine learning algorithms, including linear regression, logistic regression, neural networks, and support vector machines. It provides a general framework for optimizing models by iteratively refining their...
	Example of Gradient Descent
	Let’s say you are playing a game where the players are at the top of a mountain, and they are asked to reach the lowest point of the mountain. Additionally, they are blindfolded. So, what approach do you think would make you reach the lake?
	Take a moment to think about this before you read on.
	The best way is to observe the ground and find where the land descends. From that position, take a step in the descending direction and iterate this process until we reach the lowest point.
	Finding the lowest point in a hilly landscape. (Source: Fisseha Berhane)
	Gradient descent is an iterative optimization algorithm for finding the local minimum of a function.
	To find the local minimum of a function using gradient descent, we must take steps proportional to the negative of the gradient (move away from the gradient) of the function at the current point. If we take steps proportional to the positive of the gr...
	Gradient descent was originally proposed by CAUCHY in 1847. It is also known as steepest descent.
	Source: Clairvoyant
	The goal of the gradient descent algorithm is to minimize the given function (say cost function). To achieve this goal, it performs two steps iteratively:
	1. Compute the gradient (slope), the first order derivative of the function at that point
	2. Make a step (move) in the direction opposite to the gradient, opposite direction of slope increase from the current point by alpha times the gradient at that point
	Alpha is called Learning rate – a tuning parameter in the optimization process. It decides the length of the steps.
	How Does Gradient Descent Work?
	1. Gradient descent is an optimization algorithm used to minimize the cost function of a model.
	2. The cost function measures how well the model fits the training data and is defined based on the difference between the predicted and actual values.
	3. The gradient of the cost function is the derivative with respect to the model’s parameters and points in the direction of the steepest ascent.
	4. The algorithm starts with an initial set of parameters and updates them in small steps to minimize the cost function.
	5. In each iteration of the algorithm, the gradient of the cost function with respect to each parameter is computed.
	6. The gradient tells us the direction of the steepest ascent, and by moving in the opposite direction, we can find the direction of the steepest descent.
	7. The size of the step is controlled by the learning rate, which determines how quickly the algorithm moves towards the minimum.
	8. The process is repeated until the cost function converges to a minimum, indicating that the model has reached the optimal set of parameters.
	9. There are different variations of gradient descent, including batch gradient descent, stochastic gradient descent, and mini-batch gradient descent, each with its own advantages and limitations.
	10. Efficient implementation of gradient descent is essential for achieving good performance in machine learning tasks. The choice of the learning rate and the number of iterations can significantly impact the performance of the algorithm.
	Types of Gradient Descent
	The choice of gradient descent algorithm depends on the problem at hand and the size of the dataset. Batch gradient descent is suitable for small datasets, while stochastic gradient descent is more suitable for large datasets. Mini-batch gradient desc...
	Batch Gradient Descent
	Batch gradient descent updates the model’s parameters using the gradient of the entire training set. It calculates the average gradient of the cost function for all the training examples and updates the parameters in the opposite direction. Batch grad...
	Stochastic Gradient Descent
	Stochastic gradient descent updates the model’s parameters using the gradient of one training example at a time. It randomly selects a training example, computes the gradient of the cost function for that example, and updates the parameters in the opp...
	Mini-Batch Gradient Descent
	Mini-batch gradient descent updates the model’s parameters using the gradient of a small subset of the training set, known as a mini-batch. It calculates the average gradient of the cost function for the mini-batch and updates the parameters in the op...
	Plotting the Gradient Descent Algorithm
	When we have a single parameter (theta), we can plot the dependent variable cost on the y-axis and theta on the x-axis. If there are two parameters, we can go with a 3-D plot, with cost on one axis and the two parameters (thetas) along the other two a...
	cost along z-axis and parameters(thetas) along x-axis and y-axis (source: Research gate)
	It can also be visualized by using Contours. This shows a 3-D plot in two dimensions with parameters along both axes and the response as a contour. The value of the response increases away from the center and has the same value along with the rings. T...
	Gradient descent using Contour Plot. (source: Coursera)
	Alpha – The Learning Rate
	We have the direction we want to move in, now we must decide the size of the step we must take.
	*It must be chosen carefully to end up with local minima.
	● If the learning rate is too high, we might OVERSHOOT the minima and keep bouncing, without reaching the minima
	● If the learning rate is too small, the training might turn out to be too long
	Source: Coursera
	1. a) Learning rate is optimal, model converges to the minimum
	2. b) Learning rate is too small, it takes more time but converges to the minimum
	3. c) Learning rate is higher than the optimal value, it overshoots but converges (1/C < η <2/C)
	4. d) Learning rate is very large, it overshoots and diverges, moves away from the minima, performance decreases on learning
	Source: researchgate
	Note: As the gradient decreases while moving towards the local minima, the size of the step decreases. So, the learning rate (alpha) can be constant over the optimization and need not be varied iteratively.
	Local Minima
	The cost function may consist of many minimum points. The gradient may settle on any one of the minima, which depends on the initial point (i.e initial parameters(theta)) and the learning rate. Therefore, the optimization may converge to different poi...
	Convergence of cost function with different starting points (Source: Gfycat)
	Code Implementation of Gradient Descent in Python
	Gradient Descent Algorithm
	Challenges of Gradient Descent
	While gradient descent is a powerful optimization algorithm, it can also present some challenges that can affect its performance. Some of these challenges include:
	1. Local Optima: Gradient descent can converge to local optima instead of the global optimum, especially if the cost function has multiple peaks and valleys.
	2. Learning Rate Selection: The choice of learning rate can significantly impact the performance of gradient descent. If the learning rate is too high, the algorithm may overshoot the minimum, and if it is too low, the algorithm may take too long to c...
	3. Overfitting: Gradient descent can overfit the training data if the model is too complex or the learning rate is too high. This can lead to poor generalization performance on new data.
	4. Convergence Rate: The convergence rate of gradient descent can be slow for large datasets or high-dimensional spaces, which can make the algorithm computationally expensive.
	5. Saddle Points: In high-dimensional spaces, the gradient of the cost function can have saddle points, which can cause gradient descent to get stuck in a plateau instead of converging to a minimum.
	To overcome these challenges, several variations of gradient descent have been developed, such as adaptive learning rate methods, momentum-based methods, and second-order methods. Additionally, choosing the right regularization method, model architect...
	What is Spiking Neural Network (SNN)?
	How Does Spiking Neural Network Work?
	Key Concepts
	Spike Based Neural Codes
	SNN Architecture
	Learning Rules in SNN’s

	Application of Spiking Neural Networks
	Advantages and Disadvantages of SNN
	Advantages
	Disadvantages

	What is a Neural Network?
	What is Convolutional Neural Network?
	How Does CNN Recognize Images?
	Layers in a Convolutional Neural Network
	Convolution Layer
	ReLU layer
	Pooling Layer

	Use case implementation using CNN
	What a convolutional neural network (CNN) does differently
	How Convolutional Neural Networks Work
	Different types of CNNs

	Architecture of CNN
	Input layer
	Convolution layer
	Pooling layer
	Fully connected layer

	Deep Learning
	Example of Deep Learning
	Architectures
	Types of Deep Learning Networks
	1. Feed Forward Neural Network
	2. Recurrent Neural Network
	3. Convolutional Neural Network
	4. Restricted Boltzmann Machine
	5. Autoencoders

	Deep learning applications
	Limitations
	Advantages
	Disadvantages

	Extreme Learning Machine
	Table of Contents
	The Feed-Forward Neural Network
	Extreme Learning Machine (ELM)
	Fundamentals of ELM
	Variants of ELM
	ELM for Online Learning
	Incremental ELM
	Pruning ELM
	Error-Minimized ELM
	Evolutionary ELM

	Applications of ELM
	IoT Application
	Transportation Application

